前言
在学校学程序设计语言的时候,能接触到的所有例子没有一个跟现实世界是有关系的。大多是关注于语言的细节层次,根本没有模型的概念,而我认为,要真正的让别人理解模型是如何建立的,最好的方法是从一个实实在在的东西开始,逐步的建立一个与物理世界可以有对应关系的模型出来。那样,在以后的实践中,可以很轻易的对未知的对象进行数学建模。OO最大的特点并非继承,多态等概念,而是与物理世界建立对应的关系!
选择有限自动机作为例子来说,有这样几点考虑:
- 有限自动机几乎是最简单的数学模型,也就是说,它本身就是一个对象
- 这个东西是计算理论中的一个比较核心的东西,也很有意思
- 有限自动机的形式化定义很明了,很精确,也很简单
当然,文章的主要目的不是要说有限状态机的计算能力,我们要关注的是如何从例子中掌握建模的基本方法。好吧,开始了:
有限自动机
有限自动机是一种抽象出来的机器,其描述能力和资源(存储)都比较有限。其用途十分广泛,特别在机电一体化中有很多地方用到,而有穷自动机和马尔可夫链的结合是当今模式识别的基础(语音识别,光学字符识别等)。
有限自动机的形式化定义很简单,是一个5元组(Q, Σ, δ, q0, F),其中
- Q是一个有穷集合,称为状态集,定义了自动机所有的状态
- Σ是一个有穷集合,称为字母表
- δ是一个转移函数,Q×Σ -> Q
- q0∈Q 是其实状态
- F⊆Q 是接受状态集(可以有多个接受状态s)
也就是说,以上几点唯一的确定一个有限自动机,自动机会有两个最终状态,接受或拒绝。
建立模型
好,开始建立模型:
- 首先,我们应该有一个用来描述有限自动机的对象,这个对象有接受输入,进行运算,得出结论等操作。当然,有限自动机也有很多种,确定型的和非确定型的,只要涉及到很多种具有共性的,我们一般会抽象出共性来做接口。
- 其次,我们可以看到,整个形式化定义都是基于集合的,我们应该有一个用以描述集合的对象,这个对象上可以进行添加元素,获取元素,删除元素,获取集合的大小等操作。
- 集合中是什么东西呢? 可以看到有状态,有字母表,我们可以考虑设计一个基类(元素),基类上可以拿到元素的真实值。
- 这个转移函数如何表示? δ实际上是一个矩阵,类似于数字电子中的真值表,因此我们需要有一个对象来表示这个转移函数,这个对象可以根据当前状态和输入字符来查出一个新的状态来(这就是它为什么叫转移函数的原因)。
抽象到这个粒度,可以看出整个系统中的所有对象我们都可以表示了,然后我们可以对这些对象进行适当的简化:
先看看自动机的接口:
/**
*
* @author juntao.qiu
*/
public interface StateMachine {
/**
* start the state machine
*/
public void start();
/**
* set the string to evaluate
* @param string the <code>string</code> to be evaluate
*/
public void input(String string);
/**
* check whether the <code>string</code> is accepted by state machine
* @return
*/
public boolean isAccept();
}
集合的接口:
/**
*
* @author juntao.qiu
*/
public interface Set {
/**
* add a new element into set
* @param element
*/
public void add(Element element);
/**
* get a element by its index
* @param index
* @return
*/
public Element get( int index);
/**
* get the size of the set
* @return size of the set
*/
public int size();
/**
* check if the set has element <code>e</code>
* @param e
* @return
*/
public boolean hasElement(Element e);
}
集合中元素的接口:
public interface Element {
/**
* get the real value of an element
* @return
*/
public String getValue();
}
转移函数:
public interface Matrix {
/**
* get the value while x is an element of State-Set, and
* an element of Epsilon-Set
* @param x an element of <code>StateSet</code>
* @param y an element of <code>EpsilonSet</code>
* @return
*/
public Element getElementAt(Element x, Element y);
}
接口是最简洁的抽象层次,可以从接口中很清晰的看出整个系统的结构来,所以这里只给出接口的定义,源码可以给出下载链接。
测试
我们来看看Main中的测试,然后就可以知道为什么要这样抽象,这样建模,main中是整个系统运行的脉络,如果接口定义的比较合理,清晰,那么代码读起来会很流畅,希望下面的代码读起来比较流畅,呵呵。
Set stateSet = new GeneralSet();//建立状态集
Set epsilonSet = new GeneralSet();//建立符号表
Set finalSet = new GeneralSet();//接受状态集
stateSet.add( new State( " Q0 " ));
stateSet.add( new State( " Q1 " ));
stateSet.add( new State( " Q2 " ));
epsilonSet.add( new State( " 0 " ));
epsilonSet.add( new State( " 1 " ));
finalSet.add( new State( " Q1 " ));//接受状态为Q1
/*
* The transfer matrix
* | 0 1
* ----*--------
* Q0 | Q0 Q1
* Q1 | Q2 Q1
* Q2 | Q1 Q1
*
*/
String[][] tran = new String[][]{
{ " Q0 " , " 0 " , " Q0 " },
{ " Q0 " , " 1 " , " Q1 " },
{ " Q1 " , " 0 " , " Q2 " },
{ " Q1 " , " 1 " , " Q1 " },
{ " Q2 " , " 0 " , " Q1 " },
{ " Q2 " , " 1 " , " Q1 " }
};
TransferMatrix matrix = new TransferMatrix(tran);//定义转移函数表
//根据5元组构造一个状态机
StateMachine machine = new FiniteStateMachine(
stateSet, epsilonSet,matrix, new State( " Q0 " ),finalSet);
machine.input( " 0100010101011 " );//在状态机上进行输入
machine.start();//开始计算
//判断是否被接受
if (machine.isAccept()){
System.err.println( " string is accepted " );
} else {
System.err.println( " string is not accepted " );
}
}
P.S. 本来要插入几张图片的,不知道为什么编辑到一半的时候插入图片老是插不进去,出来的对话框不知道怎么上传本地的图片。