站点PV等统计分析

利用工具如AWStats来分析apache的access.log文件来分析用户行为。使用Webalizer进行网络流量日志分析

大型网站,如网易和新浪。购买了一些专业的工具如Webstream进行分析

-----------------------

2:问题:{

先说系统用的框架是大家常见的SSH框架与AJAX,会的人多,招聘更容易些。目前开发的一个WEB视频分享项目,该项目中到处充斥着各种计数相关操作,如某个资源有对应的周点数、月点数、总点击数、评论数、每个分类或者标签下对应的总记录数,再就是网站流量的统计,PV值(这个计算量太大暂不实现)。老版采用的方式,就是点击一次就UPDATA一下数据库表中对应的字段值,这样站点在并发访问量大的情况下不可取,看到同行的网站大多也是采用类似(影响性能),另一种就是JSP+XML+DB方向,定时更新方法,想请问大家平时采用的是什么方式以及您的设计思路;
    另一个问题是例如评论数,目前网站的需求就是首页上有个评论数最多的视频(20条),设计中评论数一种方式就是在对应的资源表中增加一个字段用来保存对应的评论数,但这样增删评论都需要维护,这种方式相对于另一种靠程序来统计效率要高些,程序统计我的做法是因为是一对多的关系,我获得一个LIST取他的SIZE,或者写条COUNT SQL获得(影响性能).
   上述问题看似简单,但处理得不好对网站负载有一定的影响,所以请大家点评,并请教网站流量统计及PV值计算最优设计思路。

}


网络回答:

robbin:你可以内存当中保持一个点击计数器,每次更新内存的计数器,内存的计数器每达到一定的数值,例如100,就更新一次数据库。http://www.iteye.com/topic/26976

一个内存变量不过就是4bytes,你就是维护1000个计数器,不过才4KB内存,难道你要维护100百万个内存计数器?那也不过才4MB内存嘛。4MB内存你咋溢出?


sorphi :不复杂,map结构就可以

key:  要统计点击数的资源标识
value: 递增值

至于何时更新到数据库,就有多种方案。

另一个问题是例如评论数,你已经给出了两种方案了,关键是自己权衡可靠性和速度之间的关系。

网站流量统计及PV值计算,应该采用专门的日志分析软件或者第三方服务,不是你的java应用程序应该处理的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值