基于Solr的空间搜索(3)

http://ju.outofmemory.cn/entry/711

本文将继续介绍基于Solr的地理位置搜索的第二种实现方案

CartesianTiers+GeoHash

从基于Solr的地理位置搜索(2)文章中可以看到完全基于GeoHash的查询过滤,将完全遍历整个docment文档,从效率上来看并不太合适,所以结合笛卡尔层后,能有效缩减少过滤范围,从性能上能很大程度的提高。

构建索引阶段:

String geoHash = GeoHashUtils.encode(latitude, longitude);
      docment.addField(“geohash”, geoHash);
      //Cartesian Tiers
      int tier = START_TIER;//开始构建索引的层数
      //Create a bunch of tiers, each deeper level has more precision
//将一条记录的经纬度对应全部笛卡尔层的tierBoxId作为域值构建索引
      for (CartesianTierPlotter plotter : plotters) {
        docment.addField(“tier_” + tier , plotter.getTierBoxId(latitude, longitude));
        tier++;
      }

看到这里大家肯定明白了。越相近的经纬度在同层肯定会在同一个网格中,所以他们存储的tierBoxId就会是一样。那么查询的时候通过经纬度对应 层的tierBoxId,也就能找到相同层域的docId,但是如果给定的的查询范围大,可能需要将若干层的所属网格的docId都查到。

   整个查询过程是先通过笛卡尔层将若干个网格涉及的DocList存入bitSet,如下代码所示:

public DocIdSet getDocIdSet(final IndexReader reader) throws IOException {
    final FixedBitSet bits = new FixedBitSet(reader.maxDoc());
final TermDocs termDocs = reader.termDocs();
//需要查询的若干层网格的boxIdList,当然至此已经过滤掉不需要查询层的boxIdList
    final List<Double> area = shape.getArea();
    int sz = area.size();
    final Term term = new Term(fieldName);//
    // iterate through each boxid
    for (int i =0; i< sz; i++) {
      double boxId = area.get(i).doubleValue();
termDocs.seek(term.createTerm(NumericUtils.doubleToPrefixCoded(boxId)));
      // iterate through all documents
      // which have this boxId
//遍历所有包含给定boxId的docList,并将其放入bitset
      while (termDocs.next()) {
        bits.set(termDocs.doc());
      }
    }
    return bits;
  }

介绍完笛卡尔层的计算后,接下来介绍笛卡尔层过滤后返还的bitset如何和geoHash结合,从实现上讲其实很简单,就是将通过笛卡尔层过滤的 数据结果集合 依次遍历计算其与查询给定的经纬度坐标的球面距离,同时将该计算距离和查询指定范围距离进行比较,如果大于给定距离,则将当前记录继续过滤掉,那么最终剩 下的数据结果集合,将是满足查询条件的地理位置结果集合。具体实现流程见如下代码:

//将笛卡尔层的Filter作为Geohash的Filter参数传递进去,形成一个过滤链
 filter = distanceFilter = new GeoHashDistanceFilter(cartesianFilter, lat, lng, miles, geoHashFieldPrefix);

再看GeoHashDistanceFilter中最核心的方法getDocIdSet():

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
      //在这里使用到了Lucene的FieldCache来作为缓存,实际上缓存了一个以docId为下标,base32编码为值的数组
    final String[] geoHashValues = FieldCache.DEFAULT.getStrings(reader, geoHashField);
    final int docBase = nextDocBase;
    nextDocBase += reader.maxDoc();
    return new FilteredDocIdSet(startingFilter.getDocIdSet(reader)) {
      @Override
      public boolean match(int doc) {
        //通过笛卡尔层的过滤后的doc直接找到对应的base32编码
        String geoHash = geoHashValues[doc];
        //通过解码将base32还原成经纬度坐标
        double[] coords = GeoHashUtils.decode(geoHash);
        double x = coords[0];
        double y = coords[1];
        Double cachedDistance = distanceLookupCache.get(geoHash);
        double d;
        if (cachedDistance != null) {
          d = cachedDistance.doubleValue();
        } else {
           //计算2个经纬度坐标的距离
          d = DistanceUtils.getDistanceMi(lat, lng, x, y);
          distanceLookupCache.put(geoHash, d);
        }
       //小于给定查询距离的的docid放入缓存,以供下次使用,同时返回True代表当前docId是满足条件的记录
        if (d < distance){
          distances.put(doc+docBase, d);
          return true;
        } else {
          return false;
        }
      }
    };

  从上述分析中大家应该可以想到 采用笛卡尔层 Filter结合GoHash Filter的实现方案,在计算规模上会比单独使用GeoHash少了很多,而在查询性能也会有更优异的表现。

最后附上一个本地Demo的查询实例,用geofilter查找给定经纬度500km内的数据:

q=*:*&fq={!geofilt pt=30.15,-79.85 sfield=tier d=500}

查询返回结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值