质量保证的六个模式(3) - 引入客户质量模式

质量保证的六个模式(3 - 引入客户质量模式

陈能技

2007-10-6

原文:QualityIt's All in the Values – Neil Harrison

我们从研究的组织中发现模式。这些模式形成了动态组成的软件项目组的语言模式。这里有一些模式是跟质量和价值尤其相关的。这些模式是从Organizational Patterns of Agile Software Development 这本书选出来的。它们包括:

1、 雇用质量保证模式

2、引入客户质量模式

3、客户代表质量模式

4、架构师控制产品模式

5、架构和实现模式

6、代码拥有者模式

引入客户质量模式

如果你想管理一个能适应客户输入的增量的过程,而且你想你的客户感觉你爱他们,那么把客户引入到你准备好的项目管理和QA中来。

也许最重要的质量的组成部分是顾客满意。实际上,很多人会说那是唯一有用的组成部分。因此,顾客角色在你的组织中的位置表明了你的组织中质量的重要程度。在你的组织和你的顾客之间存在什么信息流呢?我们发现在一个拥有很强的质量文化的组织中,存在良好沟通的客户角色或适当的代理角色。简而言之,开发人员可以学习到顾客的需要,顾客可以得到需要的支持。引入客户质量模式包括下面的方面:

开发组织通过鼓励关键开发角色,或者组织中的角色,与顾客的沟通,来确保和维持顾客满意是非常重要的。沟通不是某个“顾客满意”小组的责任;而是整个组织结构上下全体的需要。

因此:

紧密绑定顾客角色与开发人员和架构师角色的关系,而不仅仅是与QA或市场角色。简而言子,开发人员和架构师必须自由地、经常地与顾客交流。当条件允许时,在客户他们自己的环境中来让顾客参与,而不是把他们带到你的环境中来。

让这个交互过程发生需要两个方面:机会和文化。开发人员必须有机会(和方法)去与顾客沟通。为了建立信赖和自由的沟通渠道,他们应该亲自见到顾客。

但是如果组织文化在客户与开发人员之间建立起一道墙的话,这些访问会是肤浅的。特别是,如果系统需求必须经过长期的正式过程才能得到确认,那么开发人员会受到阻碍而不能及时地向顾客反馈他们的请求。因此,组织必须建立起让开发人员拥有一定的自由度向顾客响应的文化。但是我们不是说所有的需求控制都应该委托给开发人员来做。规则还是必须的。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值