对棋盘完美覆盖问题证明过程的质疑及其解决

所谓棋盘完美覆盖问题是这样的,在8乘8的国际象棋棋盘上,用1乘2矩形方块覆盖.棋盘如下图所示:

如果棋盘上所有的格子被覆盖,并且没有漏的也没有重复覆盖,那么这样的覆盖就是完美覆盖.现在要求证明在如下的棋盘中不存在完美覆盖,其中红色的格子是不允许被覆盖的.

老师的或者说教科书上的证明是这样的.将矩形方块的2个格子编号,分别编为1和2.然后按照如下的方式覆盖棋盘:

由于红色的方格不允许覆盖,这样红色方格中的2个1就需要去掉,于是整个棋盘上1的个数和2的个数就不相等了.但是如果一个棋盘被完美覆盖的话,所用的方块数一定是整数,于是棋盘上1的个数和2的个数一定是相等的.这就推出了矛盾.所以完美覆盖是不存在的.我坚信这个结论是正确的,但是我对证明的过程表示怀疑.由于覆盖棋盘没有限制方块如果放置,所以我们在上述的覆盖中,将最后一块方块改成如下所示那样的方式,注意右下角最右边的两个数字,不是2,1了而是1,2.


在这样的覆盖中,去掉红色格子中的数字后整个棋盘中的1的个数和2的个数是相等的,于是上述的证明方法就无法得出不存在完美覆盖的结论了.由此我认为教科书中的证明不太严密(甚至有可能是错误的),这就是我的质疑所在.下面给出我的证明.

证明1:
在所有存在的完美覆盖中任意选取一个出来,然后去掉红色不允许覆盖的方格.由于两个红色的方个不相连,所以必须去掉两个方块才可以.这样去掉红色方格(也就是两个方块)后就会多出两个未被覆盖的格子,它们是如下所示的A1或者A2和B1或者B2

如果我们能够用一个方块,覆盖A1或者A2和B1或者B2,那么完美覆盖就存在了,但是从图中可以明显看出这是不可能的,应为A方格和B方格根本就不相连,所以这是不可能的.由此就证明了完美覆盖是不存在的.我相信这是一个成立的证明.但是这个证明存在被反驳的余地.那就是有没有一种覆盖方法,可以让不可覆盖的方格连在一起,如果这样的话完美覆盖就存在了.显然单从目测的方法来看是很难对是否存在这种覆盖做出判断的,应该说看不清.好,下面就给出第二个证明,这是证明具有无法反驳的说服力.

在给出第二个证明前,先讨论一个问题算是证明的一个准备.假设我们要求覆盖的棋盘只有一行,并且这一行中存在两个格子不允许覆盖.那么这两个不允许覆盖的格子满足什么条件时存在完美覆盖呢?请看下图所示,这是两个不可覆盖的格子分割一行棋盘的三种情况:

我们从第一个红格子左边的方格数,两个红格中间的方格数,和第二个红格右边的方格数来看考察这三种情况.显然只当这三数字是偶数时(包括零)才会存在完美覆盖,这就是需要满足的条件了.下面给出第二个证明:

看图2中的第一行,由于可以覆盖的格子是奇数,所以第一行的完美覆盖是不存在的.因此一定至少有一个方块是以垂直方向放置的方式被放置才有可能将第一行覆盖完.这样这个方块就会占据在第一行和第二行.于是对于第二行的覆盖来说,就多了一个不允许覆盖的格子了(否则就是重复覆盖了).不失一般性,我们可以假设在第一行这样垂直放置的方块的个数没有限制.那么这些垂直放置的方块就将第一行的空格分隔成若干部分.显然每一个部分的方格数都必须是偶数(包括零)否则第一行就不能被覆盖了.

我们来看第一行中与第一个方格相邻的方格数,假设为N.显然N是偶数(否则第一行将无法被覆盖),那么在第二行的N就是奇数了,因为第一行红格下面的格子是需要填充的,第二行的个数是N+1,所以是奇数.于是为了覆盖第二行中N所在的空格,就需要在第二行的N所在的空格中至少有一个方块是垂直放置的,于是在第三行N所在的方格数又变成偶数了.好了,这样递推下去后我们发现在奇数行中N所在方格数是偶数,而偶数行是奇数无法被完美覆盖.

那么是否存在这样一种可能,覆盖到第8行时两个不可覆盖的格子正好在第一个和最后一后个,这样中间就是6个格子从而就可以覆盖了。这样一种可能的做法就需要有一个方块在某一行是沿水平方向放置的,如下图所示:

显然这是不可能存在的,因为棋盘是对称的,只要旋转一下棋盘就可以发现这种放置方法和当前讨论的是完全一致的.所以原命题就得到证明了.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值