记得公司面试的第一面时有个面试题.
当时回答出来了.
昨天还是前天的时候偶然间想到那个面试官,又想起来当时的那个题来.
不知道怎么解决了.
囧呀.
上网查了一下,记于此处.
有1G的二进制的文件,为得出其中1的个数,每32位取出一次.设计每次读出32位时,对于该32位数据的处理算法.
即:求32位2进制数据当中1的个数.
分析:
0101 1101 1000 1101 0100 0101 1110 1011
数1的个数
二进制数,每一位上的数字都可以当做该位置上1的个数来看.
那么,这个问题就可以从本质上改写成:
32位2进制数,各位之和.
也就是设计一个计算32位二进制数据,每位之和的算法,
这个问题与之前的问题是等价的,但是给人的思路可是差的远吆.
一个经典的解决方式,针对32位数据,采用相反与分而治之的思路:
1.求相邻两位的和.
2.将相邻的两位作为一个整体,求相邻四位的和.(可以当做,把步骤1得到的结果转化成四进制数,再进行类似步骤1的操作)
3.把相邻的四位作为一个整体,求相邻八位的和.
4.把相邻的八位作为一个整体,求相邻十六位的和.
5.把相邻的十六位作为一个整体,求三十二位的和.
这边有一个流传很广的经典的算法呀.
这个是C的代码呀.
/*
* return number of bits set
*/
#include <stdio.h>
#include <stdlib.h>
unsigned int bitcount32(unsigned int x)
{
x = (x & 0x55555555UL) + ((x >> 1) & 0x55555555UL); // 看一下,5555的二进制,求得相邻两位的和
x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL); // 求得相邻四位的和
#if 1
// Version 1 这个好理解一点.再看一下Version 2
x = (x & 0x0f0f0f0fUL) + ((x >> 4) & 0x0f0f0f0fUL); // 求得相邻八位的和
x = (x & 0x00ff00ffUL) + ((x >> 8) & 0x00ff00ffUL); // 求得相邻十六位的和
x = (x & 0x0000ffffUL) + ((x >> 16) & 0x0000ffffUL); //三十二位的和
return x;
#else
// Version 2
x = (x + (x >> 4)) & 0x0f0f0f0fUL; // 0-7 in 4 bits, 八位的1的个数,最多有八个,可以在四位当中存储.
x += x >> 8; // 0-15 in 8 bits 十六位的1的个数,最多有16个,可以在八位当中存储.
x += x >> 16; // 0-31 in 8 bits 32位的1的个数,最多有32个,可以在八位当中存储
return x & 0xff;//取后八位,因为正确的结构保留在后八位.
//可以画一下二进制的图.它比Version 1要简单,但是所作的一半工作在逻辑上是不必要的.从硬件角度来说,又是没任何差别的.
#endif
}
int main()
{
short nVal;
int nCount;
printf("Input a value:");
scanf("%d", &nVal);
nCount = bitcount32(nVal);
printf("BitCount:%d\n", nCount);
system("pause");
return 0;
}