【Apache Doris】如何一键实现MySQL万表整库同步?
一、 环境信息
1.1 硬件信息
- CPU :48C
- CPU型号:x86_64
- 内存 :185GB
1.2 软件信息
- 系统 :CentOS
- Apahce Doris版本 :2.0.2
- Mysql版本:5.7.36
- Flink版本:1.17.1
- Flink-Doris-Connector版本:1.5
二、 功能介绍
Mysql万表存量+增量同步至Doris/SelectDB,主要是通过Flink计算引擎、基于Mysql CDC Connector和Doris社区研发的Flink Doris Connector 实现的。
无需提前建表,当Flink任务启动后,Flink Doris Connector 会自动识别对应的Doris表是否存在,不存在则自动创建Doris表,如果存在则直接启动同步任务。
并且能够支持Mysql源表Schema增删列自动变更至Doris,不需要手动变更Doris表的Schema或重启Job,便利之极。
三、 前提概要
3.1 安装部署
Doris/Flink/Mysql的安装部署流程可以根据版本自行Google。
- Doris下载地址:Doris下载地址
- Flink下载地址:Flink下载地址
- MySQL包下载地址:MySQL包下载地址
3.2 JAR包准备
3.2.1 数据源
Flink源端读取MySQL数据的连接器,可通过该地址下载flink-sql-connector-mysql-cdc-2.4.1.jar:
mysql-cdc-2.4.1下载地址
3.2.2 目标源
Flink目标端写Doris的Flink Doris Connector ,可通过该地址获取:
flink-doris-connector下载地址
3.3 脚本模版
./bin/flink run \
-Dexecution.checkpointing.interval=10s \
-Dparallelism.default=1 \
-c org.apache.doris.flink.tools.cdc.CdcTools \
lib/flink-doris-connector-1.17-1.5.0-SNAPSHOT.jar \
mysql-sync-database \
--database doris_db \
--mysql-conf hostname= 127.0.0.1 \
--mysql-conf port= 3306 \
--mysql-conf username= root \
--mysql-conf password= root \
--mysql-conf database-name= mysql_db \
--mysql-conf scan.startup.mode=initial \
--including-tables "test.*" \
--sink-conf fenodes= 127.0.0.1:8030 \
--sink-conf username=root \
--sink-conf password=root \
--sink-conf jdbc-url=jdbc:mysql://127.0.0.1:9030 \
--sink-conf sink.label-prefix=label \
--table-conf replication_num=1 \
- –job-name Flink任务名称, 非必需。
- -Dexecution.checkpointing.interval checkpoint时间间隔,实际task中是需要checkpoint后才执行数据写入
- –database 同步到Doris的数据库名。
- –mysql-conf MySQL CDCSource 配置,例如–mysql-conf hostname=127.0.0.1 ,可以在这里查看 所有配置MySQL-CDC,其中hostname/username/password/database-name 是必需的。
- –including-tables 需要同步的MySQL表,可以使用"|" 分隔多个表,并支持正则表达式。 比如–including-tables “test.*” 就是同步所有以test开头的表。
- –sink-conf Doris Sink 的所有配置,可以在这里查看完整的配置项。
- –table-conf Doris表的配置项,即properties中包含的内容。 例如 --table-conf replication_num=1
四、快速体验
4.1 单表同步
例如单表同步MySQL中Star Schema Benchmark的part零件信息表,共1600000条记录。
./bin/flink run \
-Dexecution.checkpointing.interval=10s \
-Dparallelism.default=1 \
-c org.apache.doris.flink.tools.cdc.CdcTools \
lib/flink-doris-connector-1.17-1.5.0-SNAPSHOT.jar \
mysql-sync-database \
--database ssb_test \
--mysql-conf hostname=172.21.16.12 \
--mysql-conf port=3306 \
--mysql-conf username=root \
--mysql-conf password=root \
--mysql-conf database-name=ssb_test \
--mysql-conf scan.startup.mode=initial \
--mysql-conf scan.incremental.snapshot.chunk.key-column=ssb_test.part:p_partkey \
--including-tables "part" \
--sink-conf fenodes=127.0.0.0:8030 \
--sink-conf username=root \
--sink-conf password=root \
--sink-conf jdbc-url=jdbc:mysql://127.0.0.0:9030 \
--sink-conf sink.label-prefix=label \
--table-conf replication_num=1 \
在FLINK_HOME执行上述命令后,WEB UI中会新增相应Job。
查看taskmanager日志可以发现,task会先对mysql主键做切分,然后再根据ckp的时间间隔按批写入commit(默认2pc提交)。
默认环境10秒ckp下,单并发写入只需3min左右即可同步完160W数据,且单副本数据压缩率高达90%!
4.2 整库同步
4.2.1 数据准备
基于【单表同步】的part零件信息表,新建一个db、然后copy几张相同表进行整库同步体验。
-- 创建测试库
create database ssb_test_part_all;
-- 创建测试表 part01~3
CREATE TABLE `part03` (
`p_partkey` int(11) DEFAULT NULL,
`p_name` varchar(23) DEFAULT NULL,
`p_mfgr` varchar(7) DEFAULT NULL,
`p_category` varchar(8) DEFAULT NULL,
`p_brand` varchar(10) DEFAULT NULL,
`p_color` varchar(12) DEFAULT NULL,
`p_type` varchar(26) DEFAULT NULL,
`p_size` int(11) DEFAULT NULL,
`p_container` varchar(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8
-- 数据写入 part01~3
insert into ssb_test_part_all.part01
select * from ssb_test.part
数据准备完成,如下图所示。
4.2.2 整库体验
整库同步MySQL中ssb_test_part_all库中的所有表,共1600000*3条记录。
./bin/flink run \
-Dexecution.checkpointing.interval=10s \
-Dparallelism.default=1 \
-c org.apache.doris.flink.tools.cdc.CdcTools \
lib/flink-doris-connector-1.17-1.5.0-SNAPSHOT.jar \
mysql-sync-database \
--database ssb_test_part_all \
--mysql-conf hostname=127.0.0.0.12 \
--mysql-conf port=3306 \
--mysql-conf username=root \
--mysql-conf password=root \
--mysql-conf database-name=ssb_test_part_all \
--mysql-conf scan.startup.mode=initial \
--mysql-conf scan.incremental.snapshot.chunk.key-column=ssb_test_part_all.part01:p_partkey,ssb_test_part_all.part02:p_partkey,ssb_test_part_all.part03:p_partkey \
--including-tables ".*" \
--sink-conf fenodes=127.0.0.0:8030 \
--sink-conf username=root \
--sink-conf password=root \
--sink-conf jdbc-url=jdbc:mysql://127.0.0.0:9030 \
--sink-conf sink.label-prefix=label \
--table-conf replication_num=1 \
在FLINK_HOME执行上述命令后,WEB UI中会新增相应整库同步Job。
同步完成结果比对,不仅简易高效,且单副本数据压缩率高达90%+!
五、常见问题
5.1 Mysql通信异常
可能是因为mysql信息填写错误或驱动包不兼容导致。
5.2 MySQL无Key同步异常
mysql源表没有设置主键,可以在脚本中指定–mysql-conf scan.incremental.snapshot.chunk.key-column=database.table:column,database.table1.column… 解决。
5.3 CKP ON HDFS连接异常
使用hadoop作为checkpoint时报如下异常:
Caused by: java.net.ConnectException: Call From hadoop1/ip to hadoop1:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
这类异常一般是由于网络原因或端口配置错误导致,可以先进行telnet ip port看是否通,再进行调整处理。
5.4 CKP ON HDFS权限异常
使用默认root跑脚本时,如果出现如下异常:
Caused by: org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, inode="/":hadoop:supergroup:drwxr-xr-x
这类异常一般切换至对应用户或者授权即可,这个case可以切换至hadoop用户起 或 将root用户加到hdfs用户组中即可。
5.5 官方【Flink Doris Connector】QA
其它问题可以参考 官方【Flink Doris Connector】QA 或 私 或 在开源社区群交流。
【Apache Doris】一键实现万表MySQL整库同步 | 快速体验 分享至此结束,体验过程中若遇到问题欢迎留言交流。最后,欢迎关注Flink Forward Asia 2023,Doris Committer 吴迪分享:《Flink 到 Doris 实时写入实践:基于 Flink CDC 构建更实时高效的数据集成链路》