这是一个非常经典的问题,因为它们分别代表了数据平台中两个至关重要但职责完全不同的领域:数据访问与安全 与 统一数据治理。
简单来说,可以做一个形象的比喻:
- Sentry 是“哨兵”:它负责在大门口检查你的身份证和通行证,决定你“能不能进入这栋楼”以及“能进入哪个房间”。它的核心是精细的、基于角色的访问控制。
- Ranger 是“社区保安+物业管理员”:它不仅负责门禁(像哨兵一样),还负责管理整个社区的规则,比如“垃圾分类”、“停车规范”、“访客登记”,并能记录下所有人的行为日志。它的核心是统一的、跨组件的安全策略与审计。
下面我们从多个维度进行详细对比。
Apache Sentry
Sentry 是一个用于在 Hadoop 组件上执行细粒度、基于角色的访问控制系统。它最初由 Cloudera 开发,后来贡献给 Apache 基金会。
核心特性:
- 精细的访问控制:可以控制到数据库、表、视图、列甚至行级别(结合 Apache Impala 或 Apache Spark 的策略)。
- 基于角色:权限不直接授予用户或组,而是先授予角色,再将角色赋予用户/组。这使得权限管理更加灵活和可复用。
- 集中式策略管理:通过一个统一的模型来管理多个数据访问工具(如 Hive, Impala, Solr)的权限。
- 简单轻量:架构相对简单,专注于解决授权问题。
主要应用场景:
- 传统数据仓库的权限模型:非常适合从传统关系型数据仓库(如 Teradata, Netezza)迁移到 Hadoop 的场景,因为它的基于角色的授权模型非常相似。
- Hive/Impala 的 SQL 数据访问控制:在主要由 SQL-on-Hadoop 引擎(如 Hive, Impala)构成的数据平台中,Sentry 是管理表、列权限的理想选择。
- 需要严格、清晰的数据权限隔离:例如,在金融行业,不同业务部门(如风控、营销)只能访问自己权限范围内的数据,Sentry 可以很好地实现这种隔离。
支持的组件:
主要与 CDH 生态绑定紧密,如 Hive、Impala、Solr。对于其他新兴组件支持较少。
Apache Ranger
Ranger 是一个用于 Hadoop 生态系统的集中式安全管理框架。它提供了一种标准化、集中化的方式来定义和管理跨所有 Hadoop 组件的安全策略。它最初由 Hortonworks 开发,后来贡献给 Apache 基金会。
核心特性:
- 集中式安全管理:提供一个统一的 Web UI 来管理 HDFS, Hive, HBase, Kafka, YARN, Storm 等几乎所有主流 Hadoop 组件的安全策略。
- 细粒度访问控制:同样支持服务、数据库、表、列级别的访问控制。
- 动态授权:策略在 Ranger Admin 中更改后,几乎可以实时同步到各个插件,无需重启服务。
- 全面的审计:这是 Ranger 的一大亮点。它会详细记录所有访问操作的日志(谁、在什么时候、从哪里、执行了什么操作、是否被允许),并统一展示在管理界面中,方便合规性检查和问题排查。
- 与 Kerberos 集成:与 Hadoop 的强认证标准 Kerberos 无缝集成。
- 插件化架构:通过为每个组件开发一个轻量级插件来实施策略,扩展性非常好。
主要应用场景:
- 企业级数据湖安全治理:当你的数据平台包含多种组件(如 HDFS, Hive, HBase, Kafka, Trino)时,Ranger 是统一管理它们安全策略的最佳选择。
- 合规性与审计要求高的场景:例如在金融、电信、医疗等行业,法规要求对所有数据的访问有详细的审计日志。Ranger 的集中审计功能至关重要。
- 需要统一安全策略的平台:希望用一套模型、一个管理界面来管理所有数据服务的权限,降低运维成本。
- 流式数据(Kafka)的安全控制:Ranger 对 Kafka 的 Topic 级别权限控制支持得很好。
支持的组件:
非常广泛,包括 HDFS, Hive, HBase, Kafka, YARN, Knox, Atlas, NiFi, Trino/Presto, Elasticsearch 等。
核心区别对比表格
特性 | Apache Sentry | Apache Ranger |
---|---|---|
核心定位 | 精细的、基于角色的数据访问授权系统 | 统一的、跨组件的安全治理与审计平台 |
架构理念 | 相对简单、专注 | 全面、插件化、可扩展 |
授权模型 | 基于角色 | 基于角色/策略 |
审计能力 | 较弱,依赖各组件自身日志 | 核心功能,提供集中、统一的审计日志和视图 |
生态系统 | 较窄,主要与 CDH 生态绑定(Hive, Impala) | 极其广泛,支持几乎所有主流 Hadoop 组件 |
动态策略 | 支持 | 支持,并且是其亮点 |
历史渊源 | 来自 Cloudera | 来自 Hortonworks |
如何选择?应用场景总结
这个选择在很大程度上也反映了早期 Cloudera 和 Hortonworks 两大 Hadoop 发行商技术路线的差异。在两家公司合并成为 Cloudera 之后,Ranger 已经成为其 CDP 产品线中默认和推荐的统一安全组件。
选择 Sentry 的情况(现在已非常少见):
- 你正在维护一个非常老旧且仅基于 CDH 的平台,并且只使用 Hive 和 Impala。
- 你的需求非常简单,只需要一个轻量级的 SQL 授权工具,对审计和跨组件统一管理没有要求。
选择 Ranger 的情况(当前的主流和标准):
- 构建新的企业级数据平台:毫无疑问选择 Ranger。它的功能更全面,生态系统支持更广,是未来发展的方向。
- 平台包含多种数据处理组件:如果你的平台同时有批处理(Hive/Spark)、实时计算(Kafka)、NoSQL(HBase)等,Ranger 是唯一能统一管理它们的安全方案。
- 有严格的合规和审计需求:Ranger 的集中审计功能是无法替代的。
- 使用 CDP 或其他现代 Hadoop 发行版:这些发行版已经将 Ranger 作为核心组件。
结论
可以这样说:Sentry 是一个优秀的“授权”工具,而 Ranger 是一个完整的“安全治理”平台。
在当今复杂的数据架构中,单纯的数据授权已经不够用了。企业更需要的是包含授权、审计、数据血缘、策略管理在内的统一安全治理能力。因此,Apache Ranger 已经成为事实上的行业标准,而 Sentry 已经基本完成了它的历史使命,在新技术架构中不再被推荐使用。
如果你是从零开始构建数据平台,请直接选择 Apache Ranger。