ArrayList与LinkedList获取指定元素对比(源码分析)

ArrayList与LinkedList获取指定元素对比(源码分析)

ArrayList获取指定元素

  1. 首先在主函数中使用ArrayList生成一个size为一千万的List实例list
    int max = 10000000;
    List<String> list = new ArrayList<>(max);
    for (int i = 0; i < max; i++) {
        list.add("a");
    }
    
  2. 来看一下ArrayListget方法的源码:
    /**
     * Returns the element at the specified position in this list.
     *
     * @param  index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
        rangeCheck(index);
    
        return elementData(index);
    }
    
    可以看到,首先使用rangeCheckindex进行检验;然后点进去elementData
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
    
    发现直接返回了elementData数组中下标为index的元素,时间复杂度为O(1)
  3. 测试一下使用get方法来获取最后一个元素所需的时间:
    long startTime = System.currentTimeMillis();
    list.get(max - 1).hashCode();
    long endTime = System.currentTimeMillis();
    System.out.println("ArrayList获取最后一个元素所需时间: "+(endTime - startTime));
    
    运行结果如下:
    ArrayList获取最后一个元素所需时间: 0
    
    发现该方法运行时间几乎为0,因为无需遍历元素,直接根据index返回数据即可;

LinkedList获取指定元素

  1. 首先在主函数中使用LinkedList生成一个size为一千万的List实例list
    int max = 10000000;
    List<String> list = new LinkedList<>();
    for (int i = 0; i < max; i++) {
        list.add("a");
    }
    
  2. 来看一下LinkedListget方法的源码:
    /**
     * Returns the element at the specified position in this list.
     *
     * @param index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
    
    可以看到,首先使用checkElementIndexindex进行检验;然后点进去node
    /**
     * Returns the (non-null) Node at the specified element index.
     */
    Node<E> node(int index) {
        // assert isElementIndex(index);
    
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }
    
    可以看出,当index位于size的前一半时,从前往后去遍历元素;当index位于size的后一半时,从后往前去遍历元素;所以当index恰好位于中间位置时,所需时间最长;
  3. 测试一下使用get方法来获取中间元素所需的时间:
    long startTime = System.currentTimeMillis();
    list.get(max / 2).hashCode();
    long endTime = System.currentTimeMillis();
    System.out.println("LinkedList获取中间元素所需时间: "+(endTime - startTime));
    
    运行结果如下:
    LinkedList获取中间元素所需时间: 17
    
    发现该方法运行时间较长,因为需要遍历元素去寻找数据;

结论

  1. 对于需要经常查询元素的场景,应尽量使用ArrayList来实现,所需时间复杂度为O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kuo-Teng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值