蓝桥杯练习题-连号区间数

该博客探讨了在1~N全排列中找出连号区间的算法问题。连号区间定义为区间内的元素递增排序后形成连续数列。文章通过样例解释了输入输出格式,并给出了两个示例输入及对应输出,展示了解决此类问题时可能存在的连号区间数目。
摘要由CSDN通过智能技术生成

题目

问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

输出格式
输出一个整数,表示不同连号区间的数目。

样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9
解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]

/*
    kaizhang_@outlook.com
    2015.3.15
*/
#include <stdio.h>

int main(void){
    int sum = 0;
    int n,i,j;
    int a[50000];

    scanf("%d", &n);
    for(i = 0; i < n; i++){
        scanf("%d", a + i);
    }
    for(i = 0; i < n; i++){
        for(j = i; j < n; j++){
            //没有考虑区间长度为1的情况,直接使sum+n 
            if(((a[i] > a[j] ? (a[i] - a[j]) : (a[j] - a[i])) + 1) == (j - i)){
                printf("[%d, %d]   ", i + 1, j + 1);
                sum++;
            }
        }
    }
    printf("%d\n", sum + n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值