题目
问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式
输出一个整数,表示不同连号区间的数目。样例输入1
4
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
样例输出2
9
解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]
/*
kaizhang_@outlook.com
2015.3.15
*/
#include <stdio.h>
int main(void){
int sum = 0;
int n,i,j;
int a[50000];
scanf("%d", &n);
for(i = 0; i < n; i++){
scanf("%d", a + i);
}
for(i = 0; i < n; i++){
for(j = i; j < n; j++){
//没有考虑区间长度为1的情况,直接使sum+n
if(((a[i] > a[j] ? (a[i] - a[j]) : (a[j] - a[i])) + 1) == (j - i)){
printf("[%d, %d] ", i + 1, j + 1);
sum++;
}
}
}
printf("%d\n", sum + n);
return 0;
}