pytorch 给数据增加一个维度

使用 unsqueeze

>>> help(torch.squeeze)

Help on built-in function unsqueeze:

unsqueeze(...)
    unsqueeze(input, dim, out=None) -> Tensor
    
    Returns a new tensor with a dimension of size one inserted at the
    specified position.
    
    The returned tensor shares the same underlying data with this tensor.
    
    A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)``
    can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze`
    applied at :attr:`dim` = ``dim + input.dim() + 1``.
    
    Args:
        input (Tensor): the input tensor
        dim (int): the index at which to insert the singleton dimension
        out (Tensor, optional): the output tensor
    
    Example::
    
        >>> x = torch.tensor([1, 2, 3, 4])
        >>> torch.unsqueeze(x, 0)
        tensor([[ 1,  2,  3,  4]])
        >>> torch.unsqueeze(x, 1)
        tensor([[ 1],
                [ 2],
                [ 3],
                [ 4]])

也可以直接:

>>> a = torch.Tensor([1,2,3,4])
>>> a.unsqueeze(0)
tensor([[1., 2., 3., 4.]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值