pytorch如何增加维度_刷deeplizard(PyTorch 版)深度学习视频系列-episode22

本文详细介绍了在PyTorch中如何使用unsqueeze函数为张量增加维度,以满足神经网络对批量数据的要求。同时,文章探讨了argmax函数的作用及其参数dim的含义,并通过实例解释了Softmax函数在分类问题中的应用,特别是在dim参数设置为0和1时,对输出的影响。
摘要由CSDN通过智能技术生成

a63dfe3b70a514abc6a98bff7467cee2.png

63deb58ae7ee478e6ae226a44a90da8e.png

我们把单个样本图像张量放入一个大小为1的批次当 (batchsize,in_channels,height,width)=(批量大小,输入通道数,高,宽)

18ada110f34d5533c5f5941dc03dc326.png

函数:torch.unsqueeze(tensor, dim)

unsqueeze()函数的功能是在tensor的某个维度上添加一个维数为1的维度,这个功能用view()函数也可以实现。这一功能尤其在神经网络输入单个样本时很有用,由于pytorch神经网络要求的输入都是mini-batch型的,维度为[batch_size, channels, w, h],而一个样本的维度为[c, w, h],此时用unsqueeze()增加一个维度变为[1, c, w, h]就很方便了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值