我们把单个样本图像张量放入一个大小为1的批次当 (batchsize,in_channels,height,width)=(批量大小,输入通道数,高,宽)
函数:torch.unsqueeze(tensor, dim)
unsqueeze()函数的功能是在tensor的某个维度上添加一个维数为1的维度,这个功能用view()函数也可以实现。这一功能尤其在神经网络输入单个样本时很有用,由于pytorch神经网络要求的输入都是mini-batch型的,维度为[batch_size, channels, w, h],而一个样本的维度为[c, w, h],此时用unsqueeze()增加一个维度变为[1, c, w, h]就很方便了。