追踪问题【latex原稿】

\documentclass[a4paper,11pt]{ctexart}
\title{追踪问题}
\author{}
\date{}

\usepackage{geometry}
\usepackage{cite}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{cases}
\usepackage{graphicx}

\CTEXsetup[name={第,节}]{section}
\CTEXsetup[beforeskip = {20bp plus 1ex minus 0.2ex}]{section}
\CTEXsetup[afterskip = {6bp plus 0.2ex}]{section}
\CTEXsetup[format = {\zihao{4}\bfseries}]{section}
\CTEXsetup[name={第,小节}]{subsection}
\CTEXsetup[beforeskip = {12bp plus 1ex minus 0.2ex}]{subsection}
\CTEXsetup[afterskip = {6bp plus 0.2ex}]{subsection}
\CTEXsetup[format = {\fontsize{13bp}{15.6bp}\selectfont\bfseries}]{subsection}
\CTEXsetup[beforeskip = {12bp plus 1ex minus 0.2ex}]{subsubsection}
\CTEXsetup[afterskip = {6bp plus 0.2ex}]{subsubsection}
\CTEXsetup[format = {\zihao{-4}\bfseries}]{subsubsection}
\geometry{
	a4paper, hmargin = 2.6cm, top = 2.92cm, bottom = 3.03cm,
	headheight = 0.45cm, headsep = 0.55cm, footskip = 1.05cm
}


\begin{document}
\maketitle

\pagestyle{plain}
追踪问题: 在$Ox$轴上有点$P$以常速$a>0$沿着正方向运动, 在$xOy$平面上有点$M$以常速$v_0(>a)$运动, 其方向永远指向点$P$.
求点$M$的轨迹以及追上点$P$所需的时间.
假设追逐开始时点$M$和点$P$的位置依次是$(x_0,y_0)$和$(x_0,0)$,此处$y_0>0$.
这个题目有个生动的实例------狗撵兔子问题: 假设$P$和$M$分别代表兔子和狗, $Ox$表示兔子逃跑的方向.
如果兔子的前方$m$米处有一个能钻入躲藏的小洞, 问狗的速度$v_0$至少多大时, 才能在兔子进洞钱捉住它?
\begin{figure}[htbp]
\centering
\includegraphics[width=10cm]{pic.png}
\caption{追踪问题}
\end{figure}

如上图,设追线方程为$y = y(x).$
由题目条件可得
\begin{equation}
\frac{dy}{dx} = \frac{y}{x-at}
\end{equation}
\begin{equation}
\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = v_0^2
\end{equation}
由(1)得
\begin{equation*}
y\frac{dx}{dy} = x - at
\end{equation*}
两边对$y$求导
\begin{equation}
y\frac{d^2x}{dy^2} = -a\frac{dt}{dy}
\end{equation}
由(2)得
\begin{equation}
\left[\left(\frac{dx}{dy}\right)^2 + 1\right]\left(\frac{dy}{dt}\right)^2 = v_0^2
\end{equation}
将(3)代入(4), 整理得
\begin{equation*}
a^2\left[\left(\frac{dx}{dy}\right)^2+1\right] = v_0^2 y^2 \left(\frac{d^2x}{dy^2}\right)^2
\end{equation*}
令 $u = dx/dy$
\begin{equation*}
a^2\left(u^2+1\right) = v_0^2 y^2 \left(\frac{du}{dy}\right)^2
\end{equation*}
观察发现在图示象限内, $du/dy>0$, $y>0$, 因此
\begin{equation*}
\frac{du}{dy} = \frac{a}{v_0}\frac{\sqrt{1+u^2}}{y}
\end{equation*}
解之得
\begin{equation*}
ln\left(u+\sqrt{1+u^2}\right) = \frac{a}{v_0}lny + C
\end{equation*}
即
\begin{equation}
u = \frac{1}{2}\left(C_1y^{\frac{a}{v_0}}-\frac{1}{C_1}y^{-\frac{a}{v_0}}\right)
\end{equation}
所以(当$v_0\neq a$时)
\begin{equation}
x = \int u dy  = \frac{C_1v_0}{2(a+v_0)} y^{1+\frac{a}{v_0}} + \frac{v_0}{2(a-v_0)C_1} y^{1-\frac{a}{v_0}} + C_2
\end{equation}
将初始条件$y=y_0, dx/dy=u=0$ 代入(5)式得
\begin{equation*}
C_1 = y_0^{-\frac{a}{v_0}}
\end{equation*}
再将点$(x_0,y_0)$代入(6)式得
\begin{equation*}
C_2 = x_0 + \frac{av_0y_0}{v_0^2-a^2}
\end{equation*}
所以\textbf{追踪轨迹}为
\begin{equation}
x = \frac{v_0}{2(a+v_0)} y\left(\frac{y}{y_0}\right)^{\frac{a}{v_0}} + \frac{v_0}{2(a-v_0)} y\left(\frac{y}{y_0}\right)^{-\frac{a}{v_0}} + x_0 + \frac{av_0y_0}{v_0^2-a^2}
\end{equation}
令$y=0$, 得$M,P$相遇点的$x$坐标为
$$
x = x_0 + \frac{av_0y_0}{v_0^2-a^2}
$$
所以$M,P$点的\textbf{相遇时间}为
\begin{equation}
T = \frac{x-x_0}{a} = \frac{v_0y_0}{v_0^2-a^2}
\end{equation}
对于狗撵兔子问题, 若要使狗在兔子进洞前捉住它, 则有
$$
\frac{v_0y_0}{v_0^2-a^2}\leq \frac{m}{a}\\
$$
解得
$$
v_0 \geq \frac{a}{2m}\left(y_0+\sqrt{y_0^2 + 4m^2}\right)
$$




\end{document}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值