医学图像常用特征提取方法

国内外提出的特征提取方法有很多,根据不同的目的以及不同的目标所用到的特征提取方法也不相同。一般常用的图像特征类型有图像的灰度特征,如图像总体或局部的均值、方差;图像的纹理特征,如共生矩阵、等灰度行程长度、傅立叶频谱、随机场模型等;图像的频谱特征;图像灰度变换的梯度特征;图像物体形状特征,如面积、周长、圆形度、长宽比、矩、边心矩、傅立叶描绘子、偏心率、紧凑度等;图像的信息描述以及信噪比等。 

文献[4]中提出了用傅立叶能量谱和多分辨率分形维数等特征向量采用贝叶斯分类器实现对超声肝图像的识别,对于正常的肝、肝炎、肝硬化三类超声肝图像识别大约  90%;文献[12]从一、二阶灰度统计中提取  11  个特征值,用人工神经网络的方法在肝损伤图像中识别正常肝、肝炎、恶性肿瘤肝正确率达  100%;文献[13]  利用空间灰度共生矩阵用 NN  对肝炎和淤血肝的  CT 图像进行识别,正确率 83%;文献[15]中 Asvestas 等人用分形维数和模糊  C-means  分类器来识别恶性肿瘤肝正确率达到  85.7%;文献[11]中陈菲
等人提出一种融合共生矩阵和多分辨率相结合的方法来进行超声肝癌图像特征提取,识别率有 87.74%。文献[27]中用共生矩阵、自相关的特征,采用主成分分析法(PCA)对提取出来的特征进行了降维,运用 K-means 分类器里区分正常肝,囊肿,良性和恶性肿瘤的识别率为 70%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值