peghoty

学习是一种态度!

排序:
默认
按更新时间
按访问量

部分博文导航

突然意识到,进到博客后,我的博文在主页上是按照发表时间的顺序展示的,各种类型的文章混合在一起,实在不便于查阅,虽然通过分章分类也可进行一定的区分,但分类多了也比较麻烦。因此,为方便自己查阅,同时也为方便读者快速预览本博客的内容,我打算在这里为本博客的一些主要博文搭建一个目录结构,算是读者导航吧。 ...

2014-03-24 08:05:41

阅读数:10284

评论数:2

什么是社区发现?

如果你仔细观察,你会发现,我们的生活中存在着各种各样的网络,如科研合作网络、演员合作网络、城市交通网络、电力网、以及像 QQ、微博、微信这样的社交网络。这些网络有什么特点呢?我们以大家最熟悉的社交网络来看看。

2014-11-21 14:57:43

阅读数:9151

评论数:5

Factorization Machines 学习笔记(四)学习算法

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS...

2014-10-28 10:22:34

阅读数:29759

评论数:9

Factorization Machines 学习笔记(二)模型方程

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS...

2014-10-28 10:22:16

阅读数:14228

评论数:3

Factorization Machines 学习笔记(三)回归和分类

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS...

2014-10-28 10:22:16

阅读数:10366

评论数:1

Factorization Machines 学习笔记(一)预测任务

最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD) 法和交替最小二乘法(A...

2014-10-28 10:21:55

阅读数:23800

评论数:2

发表在 Science 上的一种新聚类算法

今年 6 月份,Alex Rodriguez 和 Alessandro Laio 在 Science 上发表了一篇名为《Clustering by fast search and find of density peaks》的文章,为聚类算法的设计提供了一种新的思路。虽然文章出来后遭到了众多读者的...

2014-08-29 17:39:08

阅读数:42787

评论数:40

word2vec 中的数学原理详解(六)若干源码细节

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的...

2014-07-20 23:51:59

阅读数:28254

评论数:29

word2vec 中的数学原理详解(五)基于 Negative Sampling 的模型

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的...

2014-07-20 23:44:50

阅读数:71062

评论数:23

word2vec 中的数学原理详解(四)基于 Hierarchical Softmax 的模型

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的...

2014-07-19 22:53:39

阅读数:103259

评论数:88

word2vec 中的数学原理详解(三)背景知识

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的...

2014-07-19 22:49:37

阅读数:71622

评论数:61

word2vec 中的数学原理详解(二)预备知识

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的...

2014-07-19 22:46:40

阅读数:69786

评论数:26

word2vec 中的数学原理详解(一)目录和前言

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的...

2014-07-19 22:42:50

阅读数:168032

评论数:212

一种并行随机梯度下降法

Martin A. Zinkevich 等人(Yahoo!Lab)合作的论文 Parallelized Stochastic Gradient Descent 中给出了一种适合于 MapReduce 的并行随机梯度下降法,并给出了相应的收敛性分析。这里忽略理论部分,根据自己的理解给出文中所提并行随...

2014-06-23 13:53:56

阅读数:7019

评论数:1

DistBelief 框架下的并行随机梯度下降法 - Downpour SGD

本文是读完 Jeffrey Dean, Greg S. Corrado 等人的文章 Large Scale Distributed Deep Networks (2012) 后的一则读书笔记,重点介绍在 Google 的软件框架 DistBelief 下设计的一种用来训练大规模深度神经网络的随机梯...

2014-06-17 22:39:45

阅读数:15360

评论数:4

一种利用 Cumulative Penalty 训练 L1 正则 Log-linear 模型的随机梯度下降法

Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则。但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问...

2014-06-11 14:06:14

阅读数:3812

评论数:1

一种适合于大数据的并行坐标下降法

在机器学习中,模型的训练是一个很重要的过程,它通常是对一个目标函数进行优化,从而获取模型的参数,比较常见的优化算法包括梯度下降法、牛顿法与拟牛顿法等。但在大数据的背景下,尤其对于并行实现来说,优化算法通常是越简单越好,如坐标下降法(CD)和随机梯度下降法(SCG)就比较受欢迎。本文是阅读完论文 D...

2014-06-03 23:43:00

阅读数:6054

评论数:0

最大熵学习笔记(六)优缺点分析

生活中我们经常听到人们说“不要把鸡蛋放到一个篮子里”,这样可以降低风险。深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle)。本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详...

2014-05-22 08:28:01

阅读数:7788

评论数:4

最大熵学习笔记(五)最优化算法

生活中我们经常听到人们说“不要把鸡蛋放到一个篮子里”,这样可以降低风险。深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle)。本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详...

2014-05-22 08:27:49

阅读数:11947

评论数:7

最大熵学习笔记(四)模型求解

生活中我们经常听到人们说“不要把鸡蛋放到一个篮子里”,这样可以降低风险。深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle)。本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详...

2014-05-22 08:27:39

阅读数:12317

评论数:10

提示
确定要删除当前文章?
取消 删除
关闭
关闭