Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓“好特征”的指导下构建目标函数来进行优化,其中只涉及一个可调参数。本文将主要讨论两个问题:(1)什么样的特征是好的特征;(2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数。
目录链接
参考文献
SparseFiltering是一种无监督学习算法,不同于常见的特征学习方法,它直接分析训练数据的特征分布,通过定义“好特征”来优化目标函数,仅涉及一个可调参数。
Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓“好特征”的指导下构建目标函数来进行优化,其中只涉及一个可调参数。本文将主要讨论两个问题:(1)什么样的特征是好的特征;(2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数。
目录链接
参考文献
2280
1266

被折叠的 条评论
为什么被折叠?