如何评价回归算法的优劣 MSE、RMSE、MAE、R-Squared

本文探讨回归算法的评估指标,包括MSE(均方误差)、RMSE(均方根误差)、MAE(平均绝对误差)和R-Squared(决定系数)。MSE和RMSE越小表示模型预测效果越好,但易受异常值影响;MAE不受异常值影响,但无法体现误差大小;R-Squared值越接近1表示模型拟合度越高。在评估模型时需综合考虑这些指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

回归算法同分类算法不同,回归算法主要用来预测,而分类算法的目的是为了分类,所以两种算法的评判标准当然也不一样。
本文就是从MSE、RMSE、MAE、R-Squared四个指标来谈一谈如何衡量回归算法的好坏。

均方误差 MSE(Mean Squared Error)

均方误差是误差的平方的期望值,而误差是指估计值和被估计值的差。公式如下:
在这里插入图片描述
那么多少MSE才是最好的呢?理论上来说MSE=0是最好的,但是一般不可能达到,所以MSE越接近0越好。
但是这又面临另外一个问题,如果MSE越小,这就代表着模型更有可能Overfit(反之就是Underfit)。我们通常都是想要一个balance between overfit and underfit.

为了更详细的解释一下MSE,我们来手工计算一次:

有一列数组: (43,41),(44,45),(45,49),(46,47),(47,44)

  • 通过这一些列数组得到回归方程如下:

y= 9.2 + 0.8x.

  • 将X带入方程获得相对应的 Y’ 预测值,如下:
9.2 + 0.8(43) = 43.6
9.2 + 0.8(44) = 44.4
9.2 + 0.8(45) = 45.2
9.2 + 0.8(46
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值