如何评价回归算法的优劣 MSE、RMSE、MAE、R-Squared
前言
回归算法同分类算法不同,回归算法主要用来预测,而分类算法的目的是为了分类,所以两种算法的评判标准当然也不一样。
本文就是从MSE、RMSE、MAE、R-Squared四个指标来谈一谈如何衡量回归算法的好坏。
均方误差 MSE(Mean Squared Error)
均方误差是误差的平方的期望值,而误差是指估计值和被估计值的差。公式如下:
那么多少MSE才是最好的呢?理论上来说MSE=0是最好的,但是一般不可能达到,所以MSE越接近0越好。
但是这又面临另外一个问题,如果MSE越小,这就代表着模型更有可能Overfit(反之就是Underfit)。我们通常都是想要一个balance between overfit and underfit.
为了更详细的解释一下MSE,我们来手工计算一次:
有一列数组: (43,41),(44,45),(45,49),(46,47),(47,44)
- 通过这一些列数组得到回归方程如下:
- 将X带入方程获得相对应的 Y’ 预测值,如下:
9.2 + 0.8(43) = 43.6
9.2 + 0.8(44) = 44.4
9.2 + 0.8(45) = 45.2
9.2 + 0.8(46