这是一道面试题:如何在海量数据(如亿级数据)中判断某个数据是否存在?
回想一下,在 java 中我们可以使用列表、集合等数据结构来存放数据,如 hashmap,然后判断某个数据是否存在,但在此问题中显然不适用,因为上亿的数据在内存较小的计算机中无法存放。
通常我们有以下解决思路:
-
将海量数据分散存储到多个文件中去,依次将每个文件载入内存进行判定;
-
使用多台机器进行分布式计算,每台机器完成各自任务;
-
使用布隆过滤器(Bloom Filter)。
本篇主要介绍第三种方法:布隆过滤器。
我们先熟悉一下位图的概念。
位图也叫位数组,可以看成是一个数组,每个数组单元只存储“0”或者“1”,每个单元大小为1bit。
正是因为位图所需内存较小,所以这里可派上用场。
上文说了,位图存放的是 0 和 1,那么怎么和实际数据对应起来呢?很自然能想到使用哈希函数。
如图,将人名存进位图时,可使用 hash 函数,将人名映射到对应的位图单元中,并将该单元数值置为 1,0 则代表没有数据映射到该单元,即该单元没有存放数据。
然而 hash 冲突是不可避免的,图中可看到“潘金莲”和“武松”散列到了同一个数组单元。这就出现了一个问题:假如我们要存储的数据中有“潘金莲”,没有“武松”,当我们对“武松”进行哈希后发现其对应位置为1,于是认为“武松”存在于该数据集中,显然这个结果是错误的,因为1是潘金莲的映射结果。
那么怎么解决这个问题呢?因为 hash 冲突不可避免,所以我们只能尽量减少冲突的发生。
一般有两种思路:
-
对位图扩容,使用容量更大的位图;
- rehash。
事实上,大名鼎鼎的布隆过滤器(Bloom Filter)使用的便是这两种思路。看下百度百科给出的定义。
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
简单而言,布隆过滤器就是位图 + 一系列随机映射函数。
如上图,使用了三个互相独立的 hash 函数,对每条数据都进行三次哈希,并将对应单元置为 1。
这样能减少 hash 冲突的发生,当然 hash 函数的个数以及位图的容量是视情况而定的。
布隆过滤器的优点:
- 每个单元只占1bit,所用空间小;
- 使用哈希直接查找,查询时间短。
布隆过滤器的缺点:
- 由于 hash 冲突的存在,有一定的误判率;
- 由于 hash 冲突的存在,删除数据较为困难。
先看误判率。
其实与刚才“武松和潘金莲”的问题类似:假设“吴用”并不在数据集中,但它的位置已被其它数据置为 1,那么判定结果会错误。
但如果“吴用”对应的某个位置为 0,那么“吴用”必定不存在,因为如果存在,与其对应的所有位置都为1.
由此可得下面两条结论:
- 布隆过滤器判断数据存在,那么它可能存在也可能不存在。
- 布隆过滤器判断数据不存在,那么它必定不存在。
再看删除数据。
这个也好理解,举个栗子。
“吴用”和“宋江”都映射到④号位置,现在想要删除“吴用”,那么④号位置到底要不要置为 0 呢?如果置为 0,那么“宋江”就不高兴了,如果不变,显然又会增加对“吴用”的误判率(已经被删除,但该位置还是1)。
在后来的改进中,对位图的每个单元增加了计数器,计数器初始值为 0,每映射一个数据,计数器加 1,每删除一个数据,计数器减 1。这样在删除数据时,只要计数器当前值大于 1,该单元就不置为 0。
布隆过滤器的应用场景有很多,典型的有 Redis 的缓存穿透、爬虫时 URL 去重、垃圾邮件的判别等。
(SAW:Game Over!)