紫书——蛇形填数

#include<iostream>
#include<string.h>
//#include<time.h>
#define maxn 20
using namespace std;
int a[maxn][maxn];
int main(){   
	 int n,x,y,tot=0;    
	 cin>>n;   
	 memset(a,0,sizeof(a));    
	 tot=a[x=0][y=n-1]=1;    
	 while(tot<n*n){        
	 	while(x+1<n&&!a[x+1][y]) a[++x][y]=++tot;        
	 	while(y-1>=0&&!a[x][y-1]) a[x][--y]=++tot;        
	 	while(x-1>=0&&!a[x-1][y]) a[--x][y]=++tot;        
	 	while(y+1<n&&!a[x][y+1]) a[x][++y]=++tot;   	
	 }    
	 for(x=0;x<n;x++){       
		 for(y=0;y<n;y++){            
		 cout<<a[x][y]<<" ";
		 }        
		 cout<<endl;   
	}    
	system("pause");    
	return 0;
}

蛇形矩阵,1的位置在右上角,先判断,再移动,如果越界就回来。
!a[x][y]是因为初始化数组为0,如果碰到已经填好的数字了就缩回去,
x,y满足小于等于n的条件,表示n行n列。
++tot,先加1,再赋值。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价据集和其他工业据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参的选择对模型性能的影响,建议进行参敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值