题意:给定一个n个数的串,首尾不能删除,没删除一个数有一个代价,即与相邻两个数的乘积,求删除所有数后代价最小
分析:dp(i,j)表示区间i~j删除所有数后最小代价
对于区间i~i+2有一个初始的代价,即a[i]*a[i+1]*a[i+2]
枚举区间j从i+3~n dp(i,j) = dp[i+1][j]+a[i]*a[i+1]*a[j] 删除的数为i+1,所以应是删除i+1的代价加上前面i+1~j的最小代价和
或者删除j-1,则dp(i,j) = dp[i][j-1]+a[i]*a[j-1]*a[j]
或者删除i~j区间内的其中一个值,则dp(i,j) = min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j])
枚举删除的这些数都是删除后子区间再无可删除数时的状态
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[105];
int dp[105][105];
int main(){
int n;
while(scanf("%d",&n) != EOF){
for(int i = 1;i <= n;i++)
scanf("%d",&a[i]);
memset(dp,0,sizeof(dp));
for(int i = n-2;i >= 1;i--){
dp[i][i+2] = a[i]*a[i+1]*a[i+2];
for(int j = i+3;j <= n;j++){
dp[i][j] = a[i]*a[i+1]*a[j]+dp[i+1][j];
dp[i][j] = min(dp[i][j],a[i]*a[j-1]*a[j]+dp[i][j-1]);
for(int k = i+2;k < j-1;k++){
dp[i][j] = min(dp[i][j],a[i]*a[k]*a[j]+dp[i][k]+dp[k][j]);
}
}
}
printf("%d\n",dp[1][n]);
}
return 0;
}