有时候我们可能只需要用yolo模型检测个别类别,并显示,这就需要知道id,以下代码可打印出
from ultralytics import YOLO
# 加载模型
model = YOLO('yolo11x.pt')
# 打印所有类别名称及其对应的ID
print(model.names)
{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
coco_names_zh = {
0: "人", # person
1: "自行车", # bicycle
2: "汽车", # car
3: "摩托车", # motorcycle
4: "飞机", # airplane
5: "公交车", # bus
6: "火车", # train
7: "卡车", # truck
8: "船", # boat
9: "交通灯", # traffic light
10: "消防栓", # fire hydrant
11: "停车标志", # stop sign
12: "停车计时器", # parking meter
13: "长凳", # bench
14: "鸟", # bird
15: "猫", # cat
16: "狗", # dog
17: "马", # horse
18: "羊", # sheep
19: "牛", # cow
20: "大象", # elephant
21: "熊", # bear
22: "斑马", # zebra
23: "长颈鹿", # giraffe
24: "背包", # backpack
25: "雨伞", # umbrella
26: "手提包", # handbag
27: "领带", # tie
28: "行李箱", # suitcase
29: "飞盘", # frisbee
30: "滑雪板", # skis
31: "单板滑雪板", # snowboard
32: "球", # sports ball
33: "风筝", # kite
34: "棒球棒", # baseball bat
35: "棒球手套", # baseball glove
36: "滑板", # skateboard
37: "冲浪板", # surfboard
38: "网球拍", # tennis racket
39: "瓶子", # bottle
40: "酒杯", # wine glass
41: "杯子", # cup
42: "叉子", # fork
43: "刀", # knife
44: "勺子", # spoon
45: "碗", # bowl
46: "香蕉", # banana
47: "苹果", # apple
48: "三明治", # sandwich
49: "橙子", # orange
50: "花椰菜", # broccoli
51: "胡萝卜", # carrot
52: "热狗", # hot dog
53: "比萨", # pizza
54: "甜甜圈", # donut
55: "蛋糕", # cake
56: "椅子", # chair
57: "沙发", # couch
58: "盆栽", # potted plant
59: "床", # bed
60: "餐桌", # dining table
61: "马桶", # toilet
62: "电视", # tv
63: "笔记本电脑", # laptop
64: "鼠标", # mouse
65: "遥控器", # remote
66: "键盘", # keyboard
67: "手机", # cell phone
68: "微波炉", # microwave
69: "烤箱", # oven
70: "烤面包机", # toaster
71: "水槽", # sink
72: "冰箱", # refrigerator
73: "书", # book
74: "钟", # clock
75: "花瓶", # vase
76: "剪刀", # scissors
77: "泰迪熊", # teddy bear
78: "吹风机", # hair drier
79: "牙刷" # toothbrush
}
例如桔子的id是49
from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('yolo11x.pt')
# 运行预测,仅检测桔子(假设桔子的类别ID为49,请根据实际模型调整)
results = model.predict("d.jpg", imgsz=640, save=False, device=0, classes=[49])
# 获取第一个结果对象
result = results[0]
# 获取检测结果图像(自动过滤非指定类别)
result_image = result.plot()
# 判断是否检测到桔子
if len(result.boxes) == 0:
print("no orange")
# 可以在图像上添加文字提示
cv2.putText(result_image, "no orange", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
else:
print(f"Detected {len(result.boxes)} oranges")
# 显示和保存结果
cv2.imshow('Detection Result', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('dec.jpg', result_image)
yolo11x.pt比yolo11n.pt 检测慢,但要更精确