0-1背包----完全背包

0-1背包使用一维数组

使用滚动数组将空间优化到了2*V,在背包九讲中提到了使用一维数组也可以达到同样的效果,个人认为这也是滚动思想的一种,由于使用一维数组解01背包会被多次用到,完全背包的一种优化实现方式也是使用一维数组,所以我们有必要理解这种方法。

如果只使用一维数组f[0…v],我们要达到的效果是:第i次循环结束后f[v]中所表示的就是使用二维数组时的f[i][v],即前i个物体面对容量v时的最大价值。我们知道f[v]是由两个状态得来的,f[i-1][v]和f[i-1][v-c[i]],使用一维数组时,当第i次循环之前时,f[v]实际上就是f[i-1][v],那么怎么得到第二个子问题的值呢?事实上,如果在每次循环中我们以v=v…0的顺序推f[v]时,就能保证f[v-c[i]]存储的是f[i-1][v-c[i]]的状态。状态转移方程为:

1
2
v = V...0; f(v) = max{ f(v), f(v-c[i])+w[i] }

我们可以与二维数组的状态转移方程对比一下

1
2
f(i,v) = max{ f(i-1,v), f(i-1,v-c[i])+w[i] }

正如我们上面所说,f[v-c[i]]就相当于原来f[i-1][v-c[i]]的状态。如果将v的循环顺序由逆序改为顺序的话,就不是01背包了,就变成完全背包了,这个后面说。这里举一个例子理解为何顺序就不是01背包了

假设有物体z容量2,价值vz很大,背包容量为5,如果v的循环顺序不是逆序,那么外层循环跑到物体z时,内循环在v=2时,物体z被放入背包,当v=4时,寻求最大价值,物体z放入背包,f[4]=max{f[4],f[2]+vz},这里毫无疑问后者最大,那么此时f[2]+vz中的f[2]已经装入了一次物体z,这样一来该物体被装入背包两次了就,不符合要求,如果逆序循环v,这一问题便解决了。

代码如下,为了加深理解,可以在内循环结束输出每一个状态的情况到文本中,会发现与使用二维数组时的状态转移矩阵都是一样一样的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <iostream>
using namespace std;
  
/* 0-1背包 版本3
  * Time Complexity  O(N*V)
  * Space Complexity O(V)
  * 设 V <= 200 N <= 10
  * 状态转移方程:v = V...0; f(v) = max{ f(v), f(v-c[i])+w[i] }
  */
  
int maxV[201];    /* 记录前i个物品中容量v时的最大价值 */
int weight[11];
int value[11];
int V, N;
  
void main()
{
     int i, j;
     scanf("%d %d",&V, &N);
     for(i = 0; i < N; ++i)
     {
         scanf("%d %d",&weight[i],&value[i]);
     }
  
     /*
      * 对于第i轮循环
      * 求出了前i个物品中面对容量为v的最大价值
     */
     for(i = 0; i < N; ++i)
     {
         /*
          * 内循环实际上讲maxV[0...v]滚动覆盖前一轮的maxV[0...V]
          * 可输出对照使用二维数组时的情况
          * j从V至0逆序是防止有的物品放入背包多次
         */
         for(j = V; j >= weight[i]; --j)   /* weight > j 的物品不会影响状态f[0,weight[i-1]]  */
         {
             int tmp = maxV[j-weight[i]]+value[i];
             maxV[j] = (maxV[j] > tmp) ? maxV[j] : tmp;
         }
     }
     printf("%d",maxV[V]);
}

可以看出,使用一维数组,代码非常简练。

完全背包问题

问题描述:

N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路:

这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}


这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

一个简单有效的优化:

完全背包问题有一个很简单有效的优化,是这样的:若两件物品ij满足c[i]<=c[j]w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

这个优化可以简单的O(N^2)地实现,一般都可以承受。另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。这个不太重要的过程就不给出伪代码了,希望你能独立思考写出伪代码或程序。

转化为01背包问题求解:

既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<=V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。

但我们有更优的O(VN)的算法。

O(VN)的算法:

这个算法使用一维数组,先看代码段:

1  for ( int i =  1; i <= N; i++)
2      for ( int v =  0; v <= V; v++)
3         f[v] = max(f[v], f[v - c[i]] + w[i]);


你会发现,这段代码与01背包问题 的代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑选入第i件物品这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑加选一件第i种物品这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。这就是这个简单的程序为何成立的道理。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值