动态规划之0-1背包问题

首先介绍一下动态规划...

设计一个动态规划算法,通常可按照以下几个步骤进行:

(1) 找出最优解的性质,并刻画其结构特征。

(2) 递归地定义最优解的值

(3) 以自底而上的方式计算出最优值

(4) 根据计算最优值时得到的信息,构造一个最优解。

对于一个给定的问题,若具有以下两个性质,则可以考虑用动态规划法来求解。

(1) 最优子结构。如果一个问题的最优解中包含了其子问题的最优解,就说该问题具有最优子结构。当一个问题具有最优子结构时,提示我们动态规划法可能会适用,但是此时贪心策略可能也是适用的。

(2) 重叠子问题。指用来解原问题的递归算法可反复地解同样的子问题,而不是总在产生新的子问题。即当一个递归算法不断地调用同一个问题时,就说该问题包含重叠子问题。此时若用分治法递归求解,则每次遇到子问题都会视为新问题,会极大地降低算法的效率,而动态规划法总是充分利用重叠子问题,对于每个子问题仅计算一次,把解保存在一个在需要时就可以查看的表中,而每次查表的时间为常数。

问题:有n个物品,第i个物品价值为vi,重量为wi,其中vi和wi均为非负数,背包的容量为W,W为非负数。现需要考虑如何选择装入背包的物品,使装入背包的物品总价值最大。该问题以形式化描述如下:

       目标函数为 :    

       约束条件为:

       满足约束条件的任一集合(x1,x2,...,xn)是问题的一个可行解,问题的目标是要求问题的一个最优解。考虑一个实例,假设n=5,W=17, 每个物品的价值和重量如表9-1所示。可将物品1,2和5装入背包,背包未满,获得价值22,此时问题解为你(1,1,0,0,1)。也可以将物品4和5装入背包,背包装满,获得价值24,此时解为(0,0,0,1,1)。

      下面根据动态规划的4个步骤求解该问题。

(1) 刻画0-1背包问题的最优解的结构。

      可以将背包问题的求解过程看作是进行一系列的决策过程,即决定哪些物品应该放入背包,哪些物品不放入背包。如果一个问题的最优解包含了物品n,即xn=1,那么其余x1,x2,...,x(n-1)一定构成子问题1,2,...,n-1在容量W-wn时的最优解。如果这个最优解不包含物品n,即xn=0,那么其余x1,x2,...,x(n-1)一定构成子问题1,2,...,n-1在容量W时的最优解。

(2)递归定义最优解的值

     根据上述分析的最优解的结构递归地定义问题最优解。设c[i,w]表示背包容量为w时,i个物品导致的最优解的总价值,得到下式。显然要求c[n,w]。

 

(3)计算背包问题最优解的值

上代码:

#include <iostream>
using namespace std;

/***
c[i][w]表示背包容量为w时,i个物品导致的最优解的总价值,大小为(n+1)*(w+1)
v[i]表示第i个物品的价值,大小为n
w[i]表示第i个物品的重量,大小为n
***/

void DP(int n, int W, int c[][18], int *v, int *wei)
{
	memset(*c, 0, (W+1)*sizeof(int));
	for (int i = 1; i <= n; i++)
	{
		c[i][0] = 0;
		for (int w = 1; w <= W; w++)
		{
			if (wei[i-1] > w)	//此处比较是关键
			{
				c[i][w] = c[i-1][w];
			}
			else
			{
				int temp = c[i-1][w-wei[i-1]] + v[i-1];	//注意wei和v数组中的第i个应该为wei[i-1]和v[i-1]
				if (c[i-1][w] > temp)
				{
					c[i][w] = c[i-1][w];
				}
				else 
					c[i][w] = temp;
			}
		}
	}
}

void findPath(int c[][18], int *x, int *wei, int n, int W)
{	
	int w = W;
	for (int i = n; i >= 2; i--)
	{
		if (c[i][w] == c[i-1][w])
		{
			x[i-1] = 0;
		}
		else
		{
			x[i-1] = 1;
			w = w - wei[i-1];
		}
	}
	if (c[1][w] == 0)
		x[0] = 0;
	else
		x[0] = 1;
}

int main()
{
	int n = 5;
	int W = 17;
	int w[] = {3, 4, 7, 8, 9};
	int v[] = {4, 5, 10, 11, 13};
	int c[6][18] = {0};
	DP(n, W, c, v, w);
	cout<<c[5][17]<<endl;
	int x[5];
	findPath(c, x, w, n, W);
	for (int i = 0; i < n; i++)
		cout<<x[i]<<" ";
}

上述代码的时间复杂度为O(nw)。

c[i][w]矩阵如下表所示:

 

(4)根据计算的结果,构造问题最优解。

     根据上一步计算的c数组,很容易构造问题的最优解。判断c[i,w]与c[i-1,w]的值是否相等,若相等,则说明xi=0,否则为1。具体代码在3中。

  • 15
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 17
    评论
好的,关于动态规划的0-1背包问题及改进,我可以给您一些解释和建议。 0-1背包问题是一个经典的动态规划问题,它的主要思想是将一个可装载重量为W的背包装满所装载物品的价值最大化。具体来说,我们有n个物品,每个物品有一个重量w和一个价值v,我们需要选择一些物品放入背包中,使得它们的总重量不超过W,且总价值最大。 经典的0-1背包问题可以使用动态规划法来解决。我们可以定义一个二维数组dp[i][j]表示前i个物品放入一个容量为j的背包中所能获得的最大价值。状态转移方程如下: - 当j<w[i]时,dp[i][j] = dp[i-1][j],即当前背包容量不足以放下第i个物品,只能选择不装入背包。 - 当j>=w[i]时,dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i]),即可以选择不装入第i个物品,此时最大价值为dp[i-1][j];或者选择装入第i个物品,此时最大价值为dp[i-1][j-w[i]]+v[i]。 最终的结果为dp[n][W]。 以上是经典的0-1背包问题的解法。但是在实际应用中,我们可能会遇到一些特殊情况,比如物品的价值和重量没有整数限制,此时我们可以使用分数背包问题的算法;或者物品的数量很多,此时我们可以使用优化的动态规划法来解决。 具体来说,我们可以使用一些优化方法来减少计算量,比如: - 倒序遍历:因为状态转移方程中的dp[i-1][j]只依赖于dp[i][j]和dp[i][j-w[i]],所以可以倒序遍历j的值,使得后面的状态可以利用前面已经计算好的状态,减少计算量。 - 滚动数组:由于dp[i][j]只依赖于dp[i-1][.],所以我们可以使用滚动数组的方式,只存储两行数据,从而减少空间复杂度。 - 贪心算法:对于某些特殊情况,可以使用贪心算法来进行优化,比如物品的价值与重量比率相同,此时可以按照单位重量的价值从大到小排序,然后依次装入。 以上是一些常用的优化方法,具体的实现可以根据不同的情况进行选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值