给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。
输入格式
共一行,包含一个整数 n。
输出格式
共一行,包含一个整数,表示 1∼n 中每个数的欧拉函数之和。
数据范围
1≤n≤106
输入样例:
6
输出样例:
12
题意分析:
首先补一个公式
欧拉函数的定义
1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。
若在算数基本定理中, N = p 1 a 1 p 2 a 2 … p m a m N=p^{a_1}_1p^{a_2}_2…p^{a_m}_m N=p1a1p2a2…pmam,则:
ϕ ( N ) = N × p 1 − 1 p 1 × p 2 − 1 p 2 × … × p m − 1 p m ϕ(N) = N×\frac{p1−1}{p1}×\frac{p2−1}{p2}×…×\frac{p_m−1}{p_m} ϕ(N)=N×p1p1−1×p2p2−1×…×pmpm−1
因为这个题n的数据量很大,所以我们需要用线性筛,在筛法的过程中顺便求出每个数的欧拉函数值,然后最后累加。
这个题需要有线性筛的基础
题目思路:
1)质数
i
i
i 的欧拉函数即为phi[i] = i - 1,1 ~ i−1均与
i
i
i互质,共i−1个。
2)
p
h
i
[
p
r
i
m
e
s
[
j
]
∗
i
]
phi[primes[j] * i]
phi[primes[j]∗i]分为两种情况:
① i % primes[j] == 0时:primes[j]是i的最小质因子,也是
p
r
i
m
e
s
[
j
]
∗
i
primes[j] * i
primes[j]∗i 的最小质因子,因此1 - 1 / primes[j]这一项在phi[i]中计算过了,只需将基数N修正为primes[j]倍,最终结果为
p
h
i
[
i
]
∗
p
r
i
m
e
s
[
j
]
phi[i] * primes[j]
phi[i]∗primes[j]。
② i % primes[j] != 0:primes[j]不是i的质因子,只是 p r i m e s [ j ] ∗ i primes[j] * i primes[j]∗i 的最小质因子,因此不仅需要将基数N修正为primes[j]倍,还需要乘上 p r i m e [ j ] − 1 p r i m e s [ j ] \frac{prime[j]-1} {primes[j]} primes[j]prime[j]−1 这一项,因此最终结果 p h i [ i ] ∗ ( p r i m e s [ j ] − 1 ) phi[i] * (primes[j] - 1) phi[i]∗(primes[j]−1)。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1000005;
int phi[N]; //记录数 i 的欧拉函数的值
int cnt,prime[N];
bool is[N];
//线性筛
LL solve(int n)
{
phi[1] = 1;
for(int i=2; i<=n; ++i){
if(!is[i]){
prime[cnt++] = i;
//如果这个数是质数,则欧拉函数的值为 i-1
phi[i] = i-1;
}
for(int j=0; prime[j] <= n/i; ++j){
is[prime[j] * i] = true;
if(i % prime[j] == 0){
//如果 i % prime[j] == 0 所以prime[j]是i的最小质数,可以推出此公式
phi[prime[j] * i] = phi[i] * prime[j];
break;
}
//如果 i % prime[j] != 0 所以prime[j]是 i * prime[j] 的最小质数,可以推出此公式
phi[prime[j] * i] = phi[i] * (prime[j] - 1);
}
}
LL res = 0;
for(int i=1; i<=n; ++i){
res += phi[i];
}
return res;
}
int main()
{
int n;
cin >> n;
cout << solve(n) << endl;
return 0;
}