874. 筛法求欧拉函数(线性筛)

筛法求欧拉函数

给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。

输入格式
共一行,包含一个整数 n。

输出格式
共一行,包含一个整数,表示 1∼n 中每个数的欧拉函数之和。

数据范围
1≤n≤106
输入样例:
6
输出样例:
12

题意分析
首先补一个公式

欧拉函数的定义

1∼N 中与 N 互质的数的个数被称为欧拉函数,记为 ϕ(N)。
若在算数基本定理中, N = p 1 a 1 p 2 a 2 … p m a m N=p^{a_1}_1p^{a_2}_2…p^{a_m}_m N=p1a1p2a2pmam,则:
ϕ ( N ) = N × p 1 − 1 p 1 × p 2 − 1 p 2 × … × p m − 1 p m ϕ(N) = N×\frac{p1−1}{p1}×\frac{p2−1}{p2}×…×\frac{p_m−1}{p_m} ϕ(N)=N×p1p11×p2p21××pmpm1

因为这个题n的数据量很大,所以我们需要用线性筛,在筛法的过程中顺便求出每个数的欧拉函数值,然后最后累加。
这个题需要有线性筛的基础

题目思路
1)质数 i i i 的欧拉函数即为phi[i] = i - 1,1 ~ i−1均与 i i i互质,共i−1个。

2) p h i [ p r i m e s [ j ] ∗ i ] phi[primes[j] * i] phi[primes[j]i]分为两种情况:
① i % primes[j] == 0时:primes[j]是i的最小质因子,也是 p r i m e s [ j ] ∗ i primes[j] * i primes[j]i 的最小质因子,因此1 - 1 / primes[j]这一项在phi[i]中计算过了,只需将基数N修正为primes[j]倍,最终结果为 p h i [ i ] ∗ p r i m e s [ j ] phi[i] * primes[j] phi[i]primes[j]

② i % primes[j] != 0:primes[j]不是i的质因子,只是 p r i m e s [ j ] ∗ i primes[j] * i primes[j]i 的最小质因子,因此不仅需要将基数N修正为primes[j]倍,还需要乘上 p r i m e [ j ] − 1 p r i m e s [ j ] \frac{prime[j]-1} {primes[j]} primes[j]prime[j]1 这一项,因此最终结果 p h i [ i ] ∗ ( p r i m e s [ j ] − 1 ) phi[i] * (primes[j] - 1) phi[i](primes[j]1)

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long LL;
const int N = 1000005;

int phi[N];  //记录数 i 的欧拉函数的值
int cnt,prime[N];
bool is[N];
//线性筛
LL solve(int n)
{
    phi[1] = 1;
    for(int i=2; i<=n; ++i){
        if(!is[i]){
            prime[cnt++] = i;
            //如果这个数是质数,则欧拉函数的值为 i-1
            phi[i] = i-1;
        }
        
        for(int j=0; prime[j] <= n/i; ++j){
        	
            is[prime[j] * i] = true;
            if(i % prime[j] == 0){
            //如果 i % prime[j] == 0 所以prime[j]是i的最小质数,可以推出此公式
                phi[prime[j] * i] = phi[i] * prime[j];
                break;
            }
            //如果 i % prime[j] != 0 所以prime[j]是 i * prime[j] 的最小质数,可以推出此公式
            phi[prime[j] * i] = phi[i] * (prime[j] - 1);
        }
        
    }
    LL res = 0;
    for(int i=1; i<=n; ++i){
        res += phi[i];
    }
    return res;
}
int main()
{
    int n;
    cin >> n;
    cout << solve(n) << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葛济维的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值