目录
LeetCode 300.最长递增子序列
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列_哔哩哔哩_bilibili
力扣题目:LeetCode 300.最长递增子序列
动态规划五步曲:
1.确定dp[i]的含义
dp[i]:以nums[i]为结尾的最长递增子序列的长度为dp[i]
2.找出递推公式
if(nums[i] > nums[j]){
dp[i] = Math.max(dp[i], dp[j] + 1);
}
3.初始化dp数组
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);
4. 确定遍历方向
外循环从前往后遍历,内循环从前往后遍历或者从后往前遍历也行
5.打印dp数组
代码如下(java):
class Solution {
public int lengthOfLIS(int[] nums) {
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);
for(int i = 1; i < dp.length; i++){
for(int j = 0; j < i; j++){
if(nums[i] > nums[j]){
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int res = 0;
for(int i = 0; i < dp.length; i++){
res = Math.max(res, dp[i]);
}
return res;
}
}
LeetCode 674.最长连续递增序列
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列_哔哩哔哩_bilibili
动态规划五步曲:
1.确定dp[i]的含义
dp[i]:下标为i的最长连续递增序列的长度为dp[i]
2.找出递推公式
if(nums[i] > nums[i-1]){
dp[i] = dp[i-1] + 1;
}
3.初始化dp数组
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);
4.确定遍历方向
从前往后遍历
5.打印dp数组
代码如下(Java):
class Solution {
public int findLengthOfLCIS(int[] nums) {
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);
for(int i = 1; i < nums.length; i++){
if(nums[i] > nums[i-1]){
dp[i] = dp[i-1] + 1;
}
}
int res = 1;
for(int i = 0; i < nums.length; i++){
res = Math.max(res, dp[i]);
}
return res;
}
}
LeetCode 718.最长重复子数组
文章讲解:代码随想录
视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组_哔哩哔哩_bilibili
力扣题目:LeetCode 718.最长重复子数组
动态规划五步曲:
1.确定dp[i][j]的含义
dp[i][j]:nums1[i]和nums2[j]中最长重复子数组为dp[i][j]
2.找出递推公式
if(nums1[i-1] == nums2[j-1]){
dp[i][j] = dp[i-1][j-1] + 1;
result = Math.max(result, dp[i][j]);
}
3.初始化dp数组
dp数组中下标i为0和下标j为0都初始化为0
4.确定遍历方向
从前往后遍历
5.打印dp数组
代码如下(Java):
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int result = 0;
int[][] dp = new int[nums1.length + 1][nums2.length + 1];
for(int i = 1; i < nums1.length + 1; i++){
for(int j = 1; j < nums2.length + 1; j++){
if(nums1[i-1] == nums2[j-1]){
dp[i][j] = dp[i-1][j-1] + 1;
result = Math.max(result, dp[i][j]);
}
}
}
return result;
}
}