矩阵论 施密特正交化的几何解释_最直观图解法

线性代数中最头疼的公式恐怕就是施密特正交化了。但其实搞清楚它的几何原理之后公式的记忆就简单多了,数学重在理解!

给定一组基α1,α2,...,αnα1,α2,...,αn

首先清除一个公式,两个向量α,βα,β
如图红色部分即为投影部分
这里写图片描述

则蓝色部分向量为α2(α2,β1)(β1,β1)βα2−(α2,β1)(β1,β1)β是垂直的

而当向量个数为3时,对应三维空间的几何解释如图
这里写图片描述
其中绿色的为需要正交的原始基αiαi是正交的。

同样可以推广到三维以上的欧氏空间RmRm,即施密特正交公式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值