线性代数中最头疼的公式恐怕就是施密特正交化了。但其实搞清楚它的几何原理之后公式的记忆就简单多了,数学重在理解!
给定一组基α1,α2,...,αnα1,α2,...,αn
首先清除一个公式,两个向量α,βα,β
如图红色部分即为投影部分
则蓝色部分向量为α2−(α2,β1)(β1,β1)βα2−(α2,β1)(β1,β1)β是垂直的
而当向量个数为3时,对应三维空间的几何解释如图
其中绿色的为需要正交的原始基αiαi是正交的。
同样可以推广到三维以上的欧氏空间RmRm,即施密特正交公式。