基本思想
将n个元素分成个数大致相同的两半(二分查找的前提是有序的数组),取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止;如 果x<a[n/2],则我们只要在数组a的左半部继续搜索x;如果x>a[n/2],则我们只要在数组a的右 半部继续搜索x。
C++实现
#include <iostream>
#include <stdio.h>
using namespace std;
int search(int* arr, int key, int n)
{
int low = 0;
int high = n;
while(low <= high)
{
int mid = low + (high - low)/2;
if(key == arr[mid])
{
return mid;
}else if(key < arr[mid])
{
high = mid - 1;
}else
{
low = mid + 1;
}
}
return -1;
}
int main()
{
int arr[8] = {5,6,8,11,17,23,32,61};
std::cout << search(arr, 32, 8) <<std::endl;
return 0;
}
结果:
6
注意事项
1. mid溢出问题
mid = low + (high - low)/2,很多人会写成:mid = (low + high )/2。但是后者可能会溢出。下面就重点说明下后一种写法的弊端:当数组的中元素个数很多时候,至少大于INT_MAX/2,这时当low和high都是接近INT_MAX.二者相加就可能得到一个负数。
2. 死循环问题
high = mid -1; low = mid + 1;很多人会写成:high = mid; low = mid;
例如:arr[2] = {1,6},key = 6。这时low = 0;high = 1;mid = 0.如果按照“high = mid; low = mid;”的写法,low一直为mid,即:0,这时就陷入死循环了。