LintCode:M-Longest Palindromic Substring

58 篇文章 0 订阅
28 篇文章 0 订阅

LintCode: Longest Palindromic Substring


Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

Example

Given the string = "abcdzdcab", return "cdzdc".

Challenge 

O(n2) time is acceptable. Can you do it in O(n) time.


(1)O(n)方法:字符串特性,多case分析

(2)动态规划方法,TC = O(n^2)


public class Solution {
    /*
     * @param s: input string
     * @return: the longest palindromic substring
     */
    //TC = O(n)
    //SC = O(n)
    public String longestPalindrome_1(String s) {
        int n = s.length();
        
        int[] palinStartIndexs = new int[n];//i位置的字符结尾的回文,指向其回文开始位置
        
        //初始各个字符的回文开始为自己的位置
        for(int i=0; i<n; i++){
            palinStartIndexs[i] = i;
        }
        
        int maxLen=1;
        int maxStart=0;
        for(int i=1; i<n; i++){
            int startIndex = palinStartIndexs[i-1];
            
            //最长的情况:s[i]和前一个回文的前一个相等
            if(startIndex-1>=0 && s.charAt(i)==s.charAt(startIndex-1)){
                palinStartIndexs[i] = startIndex-1;
            }else if(i-1>=0 && s.charAt(i)==s.charAt(i-1)){//次长情况:和前一个字符相等
                int sTmp = i-1;
                //这一步可以优化,再开辟一个数组,当前i结尾的回文是不是全部字符相等,这样就避免每次都要把回文遍历一遍
                //由于s的尺寸不会操过1000,可以给回文的startIndex加上1000,表示是同字符的回文
                while(sTmp-1>=0 && s.charAt(i)==s.charAt(sTmp-1)){
                    sTmp--;
                }
                palinStartIndexs[i] = sTmp;
            }else if(i-2>=0 && s.charAt(i)==s.charAt(i-2) && s.charAt(i)!=s.charAt(i-1)){//次次长的情况:和前一个字符的再前一个字符相等,相当于把前一个当回文的中间字符,组成奇数回文
                palinStartIndexs[i] = i-2;
                
            }

            int parlinLen = i-palinStartIndexs[i]+1;
            if(maxLen<parlinLen){
                maxLen = parlinLen;
                maxStart = palinStartIndexs[i];
            }
        }
        
        return s.substring(maxStart, maxStart+maxLen);
    }
    
    //动态规划
    //TC = O(n^2)
    //SC = O(n^2)
    public String longestPalindrome(String s) {
        int n = s.length();
        //dp[i][j]表示i~j字符串是否为回文
        //当s[i]==s[j],dp[i][j] = dp[i+1][j-1];
        //当s[i]!=s[j], dp[i][j] = 0;
        boolean[][] dp = new boolean[n][n];
        
        for(int i=0; i<n; i++){
            for(int j=0; j<n; j++){
                if(i>=j){
                    dp[i][j]=true;
                }else{
                    dp[i][j]=false;
                }
            }
        }
        
        int maxLen=0;
        int maxStart=0;
        for(int len=2; len<=n; len++){
            int j=0;
            for(int i=0; i+len-1<n; i++){
                j = i+len-1;
                if(s.charAt(i)==s.charAt(j)){
                    dp[i][j]=dp[i+1][j-1];
                    if(dp[i][j]){
                        maxLen = len;
                        maxStart = i;
                    }
                }else{
                    dp[i][j]=false;
                }
            }
        }  
        
        if(n<2){
            return s;
        }
        
        return s.substring(maxStart, maxStart+maxLen);
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值