
医学影像
文章平均质量分 80
分享医学影像分析、诊断和治疗方面的前沿知识和技术。
Sylvan Ding
SR Microscopy, DL&ML, NLP, AGI | 北京理工大学-计算机科学与技术专业 2025级博士研究生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于深度学习的多模态癌症数据集调研
关键词:癌症、分割、多模态、radiology、pathology、深度学习;TCIA、CPTAC、TCGA 、NSCLC、BraTS、Lung-CLiP、HECKTOR、PROSTATEx、LiTS、KiTS原创 2025-04-04 10:35:33 · 1674 阅读 · 0 评论 -
论文解读:基于深度学习的快速多细胞器多色成像和分割(超分辨显微领域)
这篇论文提出了一种结合深度学习与显微成像的创新方法,突破了活细胞内多细胞器动态成像的技术瓶颈。传统荧光标记依赖“一对一”特异性染色,受限于光谱串扰和标记效率,难以实现多细胞器同步观测。本研究采用“一对多”策略,利用脂质染料尼罗红对多种膜细胞器进行非特异性染色,通过其发射光谱对膜极性的敏感性,结合转盘共聚焦显微镜的双通道比率成像(分辨率约143 nm),生成反映细胞器异质性的高时空分辨率图像数据。在此基础上,席鹏团队设计了基于注意力U-Net的深度卷积神经网络(DCNN),通过融合强度图像与光谱比率特征...原创 2025-04-02 16:36:46 · 453 阅读 · 0 评论 -
论文解读:含可靠置信度的视频超分辨显微成像(频域卷积+贝叶斯深度学习)
A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification——含置信度的视频超分辨:从自然界到显微成像原创 2025-03-19 14:38:41 · 385 阅读 · 0 评论 -
解剖学关键点检测方向论文翻译和精读:基于热力图回归的CNN融入空间配置实现关键点定位
在这项关于解剖学关键点检测的工作中,我们提出了一个CNN架构,它可以学习将定位任务分成两个更简单的子问题,从而减少对大型训练数据集的总体需求。我们的全卷积空间配置网络(SCN)通过乘以其两个组件的热力图预测并以端到端方式训练网络来学习这种简化。因此,SCN将一个组件用于局部准确但模糊的候选预测,而另一个组件通过纳入关键点的空间配置来提高对模糊候选预测的稳健性。在我们广泛的实验评估中,我们表明所提出的SCN在各种大小有限的2D和3D关键点检测数据集上的关键点定位误差方面优于相关方法。原创 2023-06-12 15:52:49 · 1918 阅读 · 1 评论