论文解读:含可靠置信度的视频超分辨显微成像(频域卷积+贝叶斯深度学习)

文献阅读:A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification——含置信度的视频超分辨:从自然界到显微成像

摘要:

超分辨率 (SR) 神经网络将低分辨率光学显微镜图像转换为 SR 图像。单图像 SR (SISR) 方法在长期成像中的应用并未利用相邻帧之间的时间依赖性,并且受到难以量化的推理不确定性的影响。本文设计了一个可变形相空间对齐 (DPA) 延时图像 SR (TISR) 神经网络,构建了大规模荧光显微镜数据集,用于评估神经网络模型的传播和对齐组件。DPA-TISR 自适应地增强了相位域中的跨帧对齐,并且优于现有的最先进的 SISR 和 TISR 模型。本文还开发了贝叶斯 DPA-TISR 并设计了一个预期校准误差最小化框架,可以可靠地推断推理置信度。实验展示了对各种生物样本的 10,000 多个时间点的多色活细胞 SR 成像,具有高保真度、时间一致性和准确的置信度量化。



Presn

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注:转载请注明文章出处!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值