[BZOJ2820]-YY的GCD-画柿子

说在前面

这题真有意思,突然感觉数论也有套路可循
然而me现在才会做= =…是不是已经没救了


题目

BZOJ2820传送门

题面

i=1Nj=1M [gcd(i,j)] ∑ i = 1 N ∑ j = 1 M   [ g c d ( i , j ) 是 质 数 ]
不超过10000组数据

输入输出格式

输入格式:
第一行一个整数T,表示数据组数
接下来T行,每行两个整数N,M表示一组询问

输出格式:
每组数据一行一个整数,表示答案


解法

(下面均有 M M 小于N
首先拿到这个柿子,肯定是惯例的化一化
然而发现其中「 gcd(i,j) g c d ( i , j ) 是 质 数 」这个条件,好像没有办法表示出来。于是不妨假设我们已经知道了所有小于 M M 的质数,假设有k个,质数表示为p,于是有:

i=1Nj=1M[gcd(i,j)]i=1Nj=1Md=1k[gcd(i,j)=p(d)] ∑ i = 1 N ∑ j = 1 M [ g c d ( i , j ) 为 质 数 ] ⟹ ∑ i = 1 N ∑ j = 1 M ∑ d = 1 k [ g c d ( i , j ) = p ( d ) ] ⟹

dmobius 把 d 提 到 前 面 来 , 然 后 套 用 m o b i u s 函 数 的 性 质 , 得 到 :
d=1ki=1Np(d)j=1Mp(d)[gcd(i,j)=1]d=1ki=1Np(d)j=1Mp(d)ti,jμ(t)d=1kt=1Mp(d)μ(t)tiNp(d)tjMp(d)d=1kt=1Mp(d)μ(t)Np(d)tMp(d)t ∑ d = 1 k ∑ i = 1 N p ( d ) ∑ j = 1 M p ( d ) [ g c d ( i , j ) = 1 ] ⟹ ∑ d = 1 k ∑ i = 1 N p ( d ) ∑ j = 1 M p ( d ) ∑ t ∣ i , j μ ( t ) ⟹ ∑ d = 1 k ∑ t = 1 M p ( d ) μ ( t ) ∑ t ∣ i N p ( d ) ∑ t ∣ j M p ( d ) ⟹ ∑ d = 1 k ∑ t = 1 M p ( d ) μ ( t ) ⌊ N p ( d ) t ⌋ ⌊ M p ( d ) t ⌋ ⟹
p(d)tTTp(d) 然 后 是 经 典 操 作 : 把 p ( d ) t 用 T 来 代 替 , 先 确 定 T , 再 确 定 p ( d )
T=1MNTMTp(d)Tμ(Tp(d)) ∑ T = 1 M ⌊ N T ⌋ ⌊ M T ⌋ ∑ p ( d ) ∣ T μ ( T p ( d ) )

到了这一步之后,发现有分块的标志「向下取整符号」,如果我们可以快速的得出 p(d)Tμ(Tp(d)) ∑ p ( d ) ∣ T μ ( T p ( d ) ) 的话,那么一个询问就可以在根号时间内被解决了。而且这样做,可以把之前为了方便而引入的 p(d) p ( d ) 从最终的式子中移出去


那么设 F(n)=p(d)nμ(np(d)) F ( n ) = ∑ p ( d ) ∣ n μ ( n p ( d ) ) ,我们考虑一下如何快速的求出 F(n) F ( n )
首先我们从含义上去解读这个式子,即「一个整数除掉一个质因数后 μ μ 的和」。那么如果 n n 有两个平方因子 或者 n 有一个高次方因子,那么 F(n) F ( n ) 就为 0 0 了,据此,我们简单推导一下。
考虑用线性筛的方式,由F(n)和一个质数 p p 推出F(np) (即使 F F 并没有积性,但是我们发现它和μ神似)

  • n是p的倍数时
    • μ(n)=0 μ ( n ) = 0 时,说明其中已经有一个平方因子, p p 又是一个平方因子,于是F(np)=0
    • 不然, p p 是第一个平方因子,只有p(d)=p的时候, μ(npp(d)) μ ( n ∗ p p ( d ) ) 才有值,即 F(np)=μ(n) F ( n ∗ p ) = μ ( n )
  • n不是p的倍数时,相当于多了一个因子,原来的 μ μ 都取反,而 p(d)=p p ( d ) = p 时就是 μ(n) μ ( n ) ,即 F(np)=F(n)+μ(n) F ( n ∗ p ) = − F ( n ) + μ ( n )

那么直接O(n)的求出F(),再求个前缀和,对于每个询问就可以根号出解了


下面是自带大常数的代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

bool isnotp[10000005] ;
short mu[10000005] , F[10000005] ;
int T , p[3000000] , pcnt , sF[10000005] , maxM ;
struct Queries{
    int N , M ;
}q[10005] ;

void preWork(){
    mu[1] = 1 ;
    for( register int i = 2 , j ; i <= maxM ; i ++ ){
        if( !isnotp[i] ){
            p[++pcnt] = i ;
            F[i] = 1 , mu[i] = -1 ;
        }
        for( j = 1 ; j <= pcnt && i * p[j] <= maxM ; j ++ ){
            isnotp[ i*p[j] ] = true ;
            if( i % p[j] == 0 ){
                F[ i*p[j] ] = ( mu[i] == 0 ? 0 : mu[i] ) ;
                mu[ i*p[j] ] = 0 ;
                break ;
            }
            F[ i*p[j] ] = -F[i] + mu[i] ;
            mu[ i*p[j] ] = -mu[i] ;
        }
    }
    for( register int i = 1 ; i <= maxM ; i ++ )
        sF[i] = sF[i-1] + F[i] ;
}

void solve(){
    register int st , ed ;
    for( int k = 1 , N , M ; k <= T ; k ++ ){
        long long ans = 0 ;
        N = q[k].N , M = q[k].M ;
        for( st = 1 ; st <= M ; st = ed + 1 ){
            ed = min( N / ( N / st ) , M / ( M / st ) ) ;
            ans += 1LL * ( N / st ) * ( M / st ) * ( sF[ed] - sF[st-1] ) ;
        } printf( "%lld\n" , ans ) ;
    }
}

int main(){
    scanf( "%d" , &T ) ;
    for( int i = 1 ; i <= T ; i ++ ){
        scanf( "%d%d" , &q[i].N , &q[i].M ) ; 
        if( q[i].N < q[i].M ) swap( q[i].N , q[i].M ) ;
        maxM = max( maxM , q[i].M ) ;
    }
    preWork() ;
    solve() ;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值