j0k1l2m3n
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
17、隐私保护的联邦跨域社交推荐算法解析
本文提出了一种隐私保护的联邦跨域社交推荐算法(FCSR),通过结合联邦学习与差分隐私技术,解决数据分散与用户隐私保护之间的矛盾。该算法利用随机响应机制对社交网络进行脱敏处理,采用矩阵混淆方法加密用户特征向量,并通过高效的LU分解策略提升大规模稀疏矩阵计算效率。FCSR在不共享原始数据的前提下,实现了信息导向网站与社交服务平台的协作建模,有效提升了推荐系统的准确性与安全性,具有广泛的应用前景和研究价值。原创 2025-10-07 12:00:54 · 3 阅读 · 0 评论 -
16、天然气负荷预测的两阶段联邦学习与基于聚类的个性化框架
本文提出了一种两阶段联邦学习与基于聚类的个性化(CPFL)框架,用于解决天然气负荷预测中因数据异质性和隐私限制导致的传统方法性能不佳的问题。该框架结合领域知识进行联邦聚类,在保护零售商数据隐私的前提下,将消费者划分为具有相似负荷模式的聚类;通过两阶段联邦学习先预训练全局模型,再为每个聚类微调个性化模型,充分利用所有参与方的数据;引入基于注意力的聚合策略,进一步提升模型鲁棒性和预测精度。实验结果表明,CPFL框架在真实世界数据集上显著优于现有方法,尤其在MAPE等指标上表现突出,具备良好的应用前景。未来工作将原创 2025-10-06 14:48:21 · 2 阅读 · 0 评论 -
15、联邦学习在神经网络与天然气负荷预测中的应用与优化
本文探讨了联邦学习在垂直联邦神经网络和天然气负荷预测中的应用与优化。针对垂直联邦学习中模型性能与数据安全的权衡问题,提出了安全前向聚合(SFA)协议,通过掩码技术保护转换数据并提升多参与方环境下的模型性能;在天然气负荷预测场景中,提出两阶段基于聚类的个性化联邦学习(CPFL)框架,结合知识驱动聚类、全局预训练与注意力机制微调,有效应对数据异质性挑战。实验与案例分析表明,两种方法分别在信用风险评估和天然气负荷预测中显著提升了模型准确性与实用性,未来可进一步优化计算效率与聚类策略,拓展至医疗、交通等领域。原创 2025-10-05 15:37:02 · 2 阅读 · 0 评论 -
14、垂直联邦神经网络的安全前向聚合技术解析
本文提出了一种名为安全前向聚合(SFA)的新协议,用于解决垂直联邦学习中SplitNN框架在数据安全与模型性能之间的权衡问题。通过引入可移除掩码和基于同态加密的安全聚合机制,SFA在不引入噪声的前提下保护被动方的转换数据,支持两方及多方场景下的安全计算。实验表明,SFA-NN在多个数据集上的性能接近集中式训练,显著优于SplitNN,尤其在多参与方场景下有效缓解了因特征分区导致的低级特征交互损失。该方法实现了安全性与高性能的平衡,具有良好的应用前景。原创 2025-10-04 09:31:07 · 2 阅读 · 0 评论 -
13、FedAUXfdp:差分隐私的一次性联邦蒸馏及垂直联邦神经网络安全方案
本文介绍了FedAUXfdp模型与安全前向聚合(SFA)协议在联邦学习中的应用。FedAUXfdp通过引入差分隐私机制,在一次性联邦蒸馏框架下实现了对非独立同分布客户端数据的高效训练,尤其在高异构性场景中显著优于传统方法。同时,针对垂直联邦学习中SplitNN存在的模型性能损失和数据安全风险,提出了SFA协议,通过改变数据聚合方式并引入可移除掩码,在保障原始数据安全的同时提升了模型性能。实验结果验证了两种方案在隐私保护、准确率和通信效率方面的优势,为联邦学习中的隐私与性能平衡提供了有效解决方案。未来研究将聚原创 2025-10-03 16:25:29 · 2 阅读 · 0 评论 -
12、编码联邦丢弃的快速服务器学习率调整与 FedAUXfdp:差分隐私的一次性联邦蒸馏
本文探讨了两种提升联邦学习性能与隐私保护的关键技术:基于Gold码的编码联邦丢弃(CFD)结合FedAdam优化器,可在保持99.6%无丢弃准确率的同时实现2.43倍带宽节省;以及FedAUXfdp——一种实现完全(ε,δ)-差分隐私的一次性联邦蒸馏方法,在非独立同分布数据下显著优于传统基线,且精度损失可忽略。通过正则化经验风险最小化与高斯噪声机制,FedAUXfdp在单轮通信中实现了高效、安全的模型训练,为隐私敏感场景下的联邦学习提供了可行路径。原创 2025-10-02 15:10:58 · 3 阅读 · 0 评论 -
11、编码联邦丢弃的快速服务器学习率调优
本文提出了一种基于编码联邦丢弃(CFD)的快速服务器学习率调优方法,旨在解决联邦学习中的通信开销问题。通过结合FedAdam和FedAvg等自适应优化算法,引入Gold码和恒定权重码(CWC)增强子模型正交性,提升收敛速度与最终准确性。同时,设计了并行化的快速服务器学习率自适应算法,在少量额外轮次内高效搜索最优学习率,显著节省通信资源。实验表明,该方法在EMNIST数据集上能在减少2.43倍带宽使用的情况下达到与无丢弃FL相当的性能,为联邦学习的实际部署提供了高效、可扩展的解决方案。原创 2025-10-01 11:53:45 · 2 阅读 · 0 评论 -
10、联邦学习中的草图选择与编码联邦丢弃率优化
本文探讨了联邦学习中的两项关键技术:基于草图的客户端选择与编码联邦丢弃率优化。首先,提出Sketch-to-Select方案,通过草图聚类实现数据感知的客户端选择,提升模型多样性覆盖并减少通信开销;结合草图跳过策略的Sketch to Skip and Select FL算法进一步优化训练效率。其次,针对联邦丢弃率(FD)存在的准确率低和收敛慢问题,引入编码理论(如Gold码和CWC)进行子模型选择,并设计自适应服务器学习率调整机制,在保证高准确率的同时显著节省带宽。实验表明,这些方法在多种数据集上有效提升原创 2025-09-30 10:09:51 · 2 阅读 · 0 评论 -
8、深度网络的去中心化自适应聚类对客户端协作有益
本文提出了一种名为去中心化自适应聚类(DAC)的算法,用于解决非独立同分布(non-iid)数据下的去中心化机器学习问题。DAC通过基于模型训练损失的相似度分数,在每个通信轮次中动态调整客户端间的协作对象,实现软聚类分配,无需预设聚类数量。实验表明,DAC在协变量偏移和标签偏移场景下均显著优于随机通信、PENS等基线方法,甚至在异质聚类大小的情况下超越了具有完美聚类信息的oracle方案。此外,本文还研究了近似相似度估计和温度参数τ对性能的影响,并提出了可变τ策略(DAC-var)以平衡探索与利用。结果验证原创 2025-09-28 15:02:30 · 3 阅读 · 0 评论 -
7、联邦学习中客户端采样的通用理论
本文提出了一种联邦学习中客户端采样的通用理论,通过定理1建立了客户端采样方案的统计特性与FL收敛速度之间的渐近关系。理论分析表明,收敛性能依赖于随机聚合权重的方差之和(Σ)和协方差参数(γ),并首次涵盖权重和不等于1的采样方案。研究对比了MD采样与均匀采样在不同客户端数量和重要性设置下的收敛表现:当客户端重要性相同时,均匀采样更优;而在一般情况下,MD采样具有更好的收敛保证。然而,考虑到大规模场景下的计算效率,均匀采样因较低的时间复杂度成为更实用的选择。实验在莎士比亚和CIFAR10数据集上验证了理论结论,原创 2025-09-27 13:06:30 · 2 阅读 · 0 评论 -
6、联邦学习中的实用安全推荐与客户端采样理论
本文探讨了联邦学习中的两个关键技术:个性化掩码与客户端采样。在联邦推荐场景中,提出基于个性化掩码的FedMMF模型,通过集成训练和侧信息利用,在不损失性能的前提下增强隐私保护并加速训练。同时,文章分析了客户端采样的理论基础,比较了MD采样、均匀采样等无偏采样方案对模型收敛的影响,并引入扩展MD采样和基于欧几里得范数的采样等高级技术。结合实验与理论,给出了实际应用中采样方案的选择建议,最后展望了未来在隐私保护与采样策略优化方向的研究潜力。原创 2025-09-26 16:46:35 · 2 阅读 · 0 评论 -
5、基于个性化掩码的实用安全联邦推荐
本文提出了一种基于个性化掩码的实用安全联邦推荐方法——联邦掩码矩阵分解(FedMMF),旨在解决传统联邦推荐系统中隐私保护与模型效率、有效性难以兼顾的问题。FedMMF通过在本地训练生成个性化掩码来隐藏用户原始评分,并结合自适应安全聚合协议,根据数据保护程度对不同用户采用差异化的梯度聚合方式,从而在保障隐私的同时提升训练效率。理论分析与在MovieLens和LastFM等真实数据集上的实验表明,该方法能有效抵御恢复攻击和排名攻击,在不损失推荐准确性的情况下显著优于基于加密或差分隐私的传统方案。原创 2025-09-25 15:54:12 · 1 阅读 · 0 评论 -
4、基于GAN数据合成的非IID客户端联邦学习实验探究
本文提出并评估了一种基于生成对抗网络(GAN)数据合成的联邦学习框架SDA-FL,旨在解决非独立同分布(non-IID)数据下的模型性能下降问题。通过在多个基准数据集(如MNIST、CIFAR-10、SVHN和COVID-19)上的实验,验证了SDA-FL在联邦监督与半监督学习场景中均显著优于FedAvg、FedProx、SCAFFOLD等基线方法,尤其在极端非IID情况下仍保持高准确率。框架利用GAN生成合成数据缓解数据异质性,并引入伪标签机制提升模型泛化能力。研究还分析了隐私预算、服务器更新、超参数设置原创 2025-09-24 13:46:08 · 2 阅读 · 0 评论 -
3、基于GAN数据合成的非IID客户端联邦学习
本文提出了一种基于GAN数据合成的非独立同分布(non-IID)客户端联邦学习新框架——合成数据辅助联邦学习(SDA-FL)。该框架通过在客户端本地训练带差分隐私保护的WGAN-GP生成合成数据,并上传至参数服务器构建全局共享的合成数据集。利用本地模型迭代生成高置信度伪标签,结合Mixup方法增强本地训练,同时参数服务器使用合成数据优化全局模型。相比传统联邦学习,SDA-FL有效缓解了数据异质性问题,提升了模型性能,兼具隐私保护能力,适用于监督与半监督学习场景。原创 2025-09-23 16:12:23 · 2 阅读 · 0 评论 -
2、联邦学习中的自适应专家模型
本文提出了一种基于混合专家(MoE)的联邦学习框架,通过引入聚类模型和局部模型作为专家,并结合门控网络与ε-贪心探索策略,有效应对客户端数据的非独立同分布(非IID)挑战。该方法在CIFAR-10、Rot. CIFAR-10和FEMNIST等多个数据集上进行了验证,结果表明其在不同数据异构程度下均优于IFCA、集成模型和局部模型等基准方法,显著提升了模型准确率与客户端间的公平性。文章还分析了超参数调优流程、模型架构设计及通信开销优化策略,并探讨了未来在聚类收敛性、隐私保护和系统效率方面的改进方向,展示了该方原创 2025-09-22 10:11:10 · 1 阅读 · 0 评论