HihoCoder 1478 水陆距离 (DP)

时间限制:10000ms

单点时限: 1000ms
内存限制: 256MB

描述

给定一个N x M的01矩阵,其中1表示陆地,0表示水域。对于每一个位置,求出它距离最近的水域的距离是多少。  

矩阵中每个位置与它上下左右相邻的格子距离为1。

输入

第一行包含两个整数,N和M。

以下N行每行M个0或者1,代表地图。

数据保证至少有1块水域。

对于30%的数据,1 <= N, M <= 100  

对于100%的数据,1 <= N, M <= 800

输出

输出N行,每行M个空格分隔的整数。每个整数表示该位置距离最近的水域的距离。

样例输入
4 4  
0110  
1111  
1111  
0110
样例输出
0 1 1 0  
1 2 2 1  
1 2 2 1  
0 1 1 0


思路:

方法很多 如BFS,最短路,本文使用DP方法解决。

因为找水路距离最近,权值均衡,所以不可能绕圈。

那么只需DP四个方向(左上->右下,右下->左上,左下->右上,右上->左下)

状态转移方程为,来的两种方向相邻一格+1及本身取最小值。

如 左上-> 右下: dp[i][j] = min( dp[i][j], min( dp[i-1][j] ,  dp[i][j-1] ) + 1 )  //(+1放外面快了1ms(ಥ_ಥ) ,也可能早上评测姬比较快)


代码:

#include<stdio.h>
#include<string.h>

#define For(a,b,c) for(int a = b; a <= c; a++)

char maze[805][805];
int dp[805][805];

int minn(int a, int b)
{
    return a < b ? a :b;
}

int main()
{
    int N, M;
    scanf("%d%d",&N,&M);
    For(i,1,N) scanf("%s",maze[i]+1);

    memset(dp,0x3f,sizeof(dp));
    For(i,1,N) For(j,1,M) if(maze[i][j] == '0') dp[i][j] = 0;

    For(i,1,N)
    {
        For(j,1,M)
        {
            dp[i][j] = minn(dp[i][j], minn(dp[i-1][j], dp[i][j-1])+1 ); //左上

            dp[N-i+1][j] = minn(dp[N-i+1][j], minn(dp[N-i+2][j], dp[N-i+1][j-1])+1 ); //左下

            dp[i][M-j+1] = minn(dp[i][M-j+1], minn(dp[i-1][M-j+1], dp[i][M-j+2])+1 ); //右上

            dp[N-i+1][M-j+1] = minn(dp[N-i+1][M-j+1], minn(dp[N-i+2][M-j+1], dp[N-i+1][M-j+2])+1 ); //右下
        }
    }

    For(i,1,N)
    {
        for(int j = 1; j < M; j++)
            printf("%d ",dp[i][j]);
        printf("%d\n",dp[i][M]);
    }
    return 0;
}

在MATLAB中实现水陆分离通常涉及到图像处理和地理信息系统(GIS)技术。水陆分离的主要目的是从卫星遥感图像或地形数据中识别出水域陆地部分。以下是一个简单的步骤指南: 1. **读取数据**:首先,你需要导入含有土地和水面信息的遥感图像数据,例如GeoTIFF格式。可以使用`imread`函数读取图像。 ```matlab image = imread('remote_sensing_image.tif'); ``` 2. **预处理**:对图像进行预处理,包括去噪、平滑(如高斯滤波)、归一化等,以便后续分析。 ```matlab image = imfilter(image, fspecial('gaussian', [5 5], 1)); % 高斯滤波 image = mat2gray(image); % 归一化到0-1范围 ``` 3. **水体检测**:使用像SRTM( Shuttle Radar Topography Mission)这样的高分辨率数字高程模型(DEM)结合遥感图像,可以利用灰度值差异来区分水域。比如,可以设置一个阈值,将低于该阈值的部分视为水域。 ```matlab water_threshold = 0.1; % 示例阈值 binary_image = image < water_threshold; ``` 4. **形态学操作**:为了进一步细化结果并去除噪声,可以应用形态学操作,如膨胀(扩大水域区域)和腐蚀(减小非水域区域)。 ```matlab selem = strel('disk', 5); % 创建一个5像素直径的结构元素 binary_image = bwmorph(binary_image, 'open', selem); ``` 5. **水陆分离**:最后,结合DEM的海拔信息,如果某个像素在DEM中的高度接近于零,则标记为水域;反之,标记为陆地。 ```matlab land_sea = logical_or(binary_image, ~dem <= water_threshold); ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值