logistic回归学习

logistic回归为概率型非线性回归模型,是研究分类观察结果(y)与一些影响因素(x)之间关系的一种多变量分析方法

  • 可解决的问题:     
    因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。
  • 因变量的类型:
    可为连续变量、等级变量、分类变量。
  • 适用性

两元因变量的logistic回归模型方程讲解

  • 一个自变量与Y关系的回归模型如:记为p(y=1/x)表示某暴露因素状态下,结果y=1的概率(P)模型。

     或者:
  • Logistic回归函数的几何图形为
     
  • 模型中的参数(βi)估计

    通常用最大似然函数 (maximum likelihood estimate, MLE)估计β, 由统计软件包完成。
    梯度下降法

logistic回归方法补充多元线性回归的不足

  • 多元线性回归方法要求 Y 的取值为计量的连续性随机变量。
  • 多元线性回归方程要求Y与X间关系为线性关系。
  • 多元线性回归结果 不能回答“发生与否”

最大似然估计的原理

给定一个概率分布,假定其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,通过利用,我们就能计算出其概率:

但是,我们可能不知道的值,尽管我们知道这些采样数据来自于分布。那么我们如何才能估计出呢?一个自然的想法是从这个分布中抽出一个具有个值的采样,然后这些采样数据来估计. 一旦我们获得,我们就能从中找到一个关于的估计。最大似然估计会寻找关于的最可能的值(即,在所有可能的取值中,寻找一个值使这个采样的“可能性”最大化)。这种方法正好同一些其他的估计方法不同,如非偏估计,非偏估计未必会输出一个最可能的值,而是会输出一个既不高估也不低估的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值