【GitHub项目推荐--20项任务全面碾压BERT,全新XLNet预训练模型】【转载】

这是继BERT发布以来又一个令广大NLPer兴奋的消息, CMU 与谷歌大脑提出的 XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上取得了当前最佳效果。

而真正令人激动的是, XLNet 已经开放了训练代码和大型预训练模型,

论文地址:https://arxiv.org/pdf/1906.08237.pdf

开源代码与预训练模型:https://github.com/zihangdai/xlnet

BERT 带来的震撼还未平息,今日又一全新模型出现。

XLNet是一种基于 a novel generalized permutation language modeling objective的无监督表示学习方法。此外,采用Transformer-XL作为主干模型,在长文本表示的语言任务中表现出了卓越的性能。并且在各种语言任务上实现了当前最好的(SOTA)效果,如QA,natural language inference, sentiment analysis, and document ranking等。

截止到2019年6月19日,XLNet在20项任务上的表现优于BERT,并在18项任务中取得了最好的成果。以下是XLNet-Large和BERT-Large之间的一些比较:

作者阵容也是相当牛*:

  • 杨植麟(曾经的清华学霸,现在 CMU 读博)

  • Zihang Dai(CMU 博士)

  • CMU 教授 Yiming Yang

  • CMU 语言技术中心的总负责人 Jaime Carbonell

  • CMU 教授 & 苹果 AI 负责人 Russ Salakhutdinov

  • 谷歌大脑的创始成员 & AutoML 的缔造者之一 Quoc Le

相比于 BERT,XLNet 有哪些提升呢?

BERT存在的一些问题:

  • 基于DAE预训练模型虽然可以很好地建模双向语境信息,但由于需要 mask 一部分输入,从而忽略了被 mask 位置之间的依赖关系

  • 出现预训练和微调效果的差异(pretrain-finetune discrepancy)。

泛化自回归预训练模型 XLNet的优化点:

  • 通过最大化所有可能的因式分解顺序的对数似然,学习双向语境信息;

  • 用自回归本身的特点克服 BERT 的缺点。

  • 融合了当前最优自回归模型 Transformer-XL 的思路。

深度解读

首先,XLNet 不使用传统 AR 模型中固定的前向或后向因式分解顺序,而是最大化所有可能因式分解顺序的期望对数似然。由于对因式分解顺序的排列操作,每个位置的语境都包含来自左侧和右侧的 token。因此,每个位置都能学习来自所有位置的语境信息,即捕捉双向语境。

其次,作为一个泛化 AR 语言模型,XLNet 不依赖残缺数据。因此,XLNet 不会有 BERT 的预训练-微调差异。同时,自回归目标提供一种自然的方式,来利用乘法法则对预测 token 的联合概率执行因式分解(factorize),这消除了 BERT 中的独立性假设。

除了提出一个新的预训练目标,XLNet 还改进了预训练的架构设计。

简单地使用 Transformer(-XL) 架构进行基于排列的(permutation-based)语言建模是不成功的,因为因式分解顺序是任意的、训练目标是模糊的。因此,研究人员提出,对 Transformer(-XL) 网络的参数化方式进行修改,移除模糊性。

目标:排列语言建模(Permutation Language Modeling)

为了提供一个完整的概览图,研究者展示了一个在给定相同输入序列 x(但因式分解顺序不同)时预测 token x_3 的示例,如下图所示:

图 1:排列语言建模目标示例:给定相同的输入序列 x,但因式分解顺序不同,此时预测 x_3。

模型架构:对目标感知表征的双流自注意力

下图 2 的 a、b 分别展示了这两种表征的学习。其中内容表征与 Transforme 的隐藏状态类似,它将同时编码输入本身的内容及上下文信息。Query 表征仅能获取上下文信息及当前的位置,它并不能获取当前位置的内容。具体来说,他们借鉴了 Transformer-XL 中的两项重要技术——相对位置编码范式和分割循环机制。现在,结合双流注意力和 Transformer-XL 的改进,上面图 2(c) 展示了最终的排列语言建模架构。

图 2:(a)内容流注意力,与标准自注意力相同;(b)Query 流注意力,没有获取内容 x_z_t 的信息;(c)利用双流注意力的排列语言建模概览图。

Fine-tuning 与使用

STS-B: sentence pair relevance regression (with GPUs)

 1# Download the GLUE data by running this script and unpack it to some directory $GLUE_DIR.
 2
 3# Perform multi-GPU (4 V100 GPUs) finetuning with XLNet-Large by running
 4
 5CUDA_VISIBLE_DEVICES=0,1,2,3 python run_classifier.py \
 6  --do_train=True \
 7  --do_eval=False \
 8  --task_name=sts-b \
 9  --data_dir=${GLUE_DIR}/STS-B \
10  --output_dir=proc_data/sts-b \
11  --model_dir=exp/sts-b \
12  --uncased=False \
13  --spiece_model_file=${LARGE_DIR}/spiece.model \
14  --model_config_path=${LARGE_DIR}/model_config.json \
15  --init_checkpoint=${LARGE_DIR}/xlnet_model.ckpt \
16  --max_seq_length=128 \
17  --train_batch_size=8 \
18  --num_hosts=1 \
19  --num_core_per_host=4 \
20  --learning_rate=5e-5 \
21  --train_steps=1200 \
22  --warmup_steps=120 \
23  --save_steps=600 \
24  --is_regression=True
25
26# Evaluate the finetuning results with a single GPU by
27
28CUDA_VISIBLE_DEVICES=0 python run_classifier.py \
29  --do_train=False \
30  --do_eval=True \
31  --task_name=sts-b \
32  --data_dir=${GLUE_DIR}/STS-B \
33  --output_dir=proc_data/sts-b \
34  --model_dir=exp/sts-b \
35  --uncased=False \
36  --spiece_model_file=${LARGE_DIR}/spiece.model \
37  --model_config_path=${LARGE_DIR}/model_config.json \
38  --max_seq_length=128 \
39  --eval_batch_size=8 \
40  --num_hosts=1 \
41  --num_core_per_host=1 \
42  --eval_all_ckpt=True \
43  --is_regression=True
44
45# Expected performance: "eval_pearsonr 0.916+ "

Custom Usage of XLNet

 1'''
 2For finetuning, it is likely that you will be able to modify 
 3existing files such as run_classifier.py, run_squad.py and 
 4run_race.py for your task at hand. However, we also provide an 
 5abstraction of XLNet to enable more flexible usage. Below is an 
 6example:
 7'''
 8import xlnet
 9
10# some code omitted here...
11# initialize FLAGS
12# initialize instances of tf.Tensor, including input_ids, seg_ids, and input_mask
13
14# XLNetConfig contains hyperparameters that are specific to a model checkpoint.
15xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
16
17# RunConfig contains hyperparameters that could be different between pretraining and finetuning.
18run_config = xlnet.create_run_config(is_training=True, is_finetune=True, FLAGS=FLAGS)
19
20# Construct an XLNet model
21xlnet_model = xlnet.XLNetModel(
22    xlnet_config=xlnet_config,
23    run_config=run_config,
24    input_ids=input_ids,
25    seg_ids=seg_ids,
26    input_mask=input_mask)
27
28# Get a summary of the sequence using the last hidden state
29summary = xlnet_model.get_pooled_out(summary_type="last")
30
31# Get a sequence output
32seq_out = xlnet_model.get_sequence_output()
33
34# build your applications based on `summary` or `seq_out`

Pretraining with XLNet

 1'''
 2Refer to train.py for pretraining on TPUs and train_gpu.py for 
 3pretraining on GPUs. First we need to preprocess the text data 
 4into tfrecords.
 5'''
 6python data_utils.py \
 7    --bsz_per_host=32 \
 8    --num_core_per_host=16 \
 9    --seq_len=512 \
10    --reuse_len=256 \
11    --input_glob=*.txt \
12    --save_dir=${SAVE_DIR} \
13    --num_passes=20 \
14    --bi_data=True \
15    --sp_path=spiece.model \
16    --mask_alpht=6 \
17    --mask_beta=1 \
18    --num_predict=85
19'''
20where input_glob defines all input text files, save_dir is the 
21output directory for tfrecords, and sp_path is a Sentence Piece 
22model. Here is our script to train the Sentence Piece model
23'''
24
25spm_train \
26    --input=$INPUT \
27    --model_prefix=sp10m.cased.v3 \
28    --vocab_size=32000 \
29    --character_coverage=0.99995 \
30    --model_type=unigram \
31    --control_symbols=<cls>,<sep>,<pad>,<mask>,<eod> \
32    --user_defined_symbols=<eop>,.,(,),",-,–,£,€ \
33    --shuffle_input_sentence \
34    --input_sentence_size=10000000
35

详细使用介绍请访问GitHub

原文链接:

20项任务全面碾压BERT,全新XLNet预训练模型 

  • 23
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值