BUAA~冬之恋
码龄11年
关注
提问 私信
  • 博客:333,939
    333,939
    总访问量
  • 91
    原创
  • 2,088,717
    排名
  • 174
    粉丝

个人简介:Just Do It

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2014-02-06
博客简介:

u013602059的专栏

查看详细资料
个人成就
  • 获得371次点赞
  • 内容获得124次评论
  • 获得1,689次收藏
  • 代码片获得1,719次分享
创作历程
  • 2篇
    2023年
  • 3篇
    2022年
  • 4篇
    2021年
  • 61篇
    2020年
  • 8篇
    2015年
  • 21篇
    2014年
成就勋章
TA的专栏
  • 常用工具
    6篇
  • 计算机视觉
    1篇
  • 机器学习算法
    19篇
  • 论文阅读笔记
    38篇
  • pytorch学习框架
    8篇
  • ACM题目
    3篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

import matplotlib.pyplot as plt时程序异常终止

解决:一般是装的老版anaconda自带了老版本的matplotlib,会有一些兼容性问题,直接卸载重装最新版本就可以解决。问题:import matplotlib.pyplot as plt 时导致程序一直无反应。
原创
发布博客 2023.03.17 ·
637 阅读 ·
0 点赞 ·
4 评论 ·
0 收藏

空间中任意一点到球的截面的最短距离

在截面上的垂足即为空间中圆的圆心。假设圆上的任意三点的坐标分别为。方程1满足点在球面上,方程2满足点在截面上,方程3满足点到垂足。,则该点的坐标满足以下的方程组。该截面为一个空间中的圆,球心。,对应的圆上的点的坐标为。到空间圆上的最短距离为。三点均在截面上,则有。,该点到截面的距离为。
原创
发布博客 2023.02.11 ·
876 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Diffusion-LM Improves Controllable Text Generation 扩散语言模型改善可控文本生成

论文链接:https://arxiv.org/abs/2205.14217代码链接:https://github.com/XiangLi1999/Diffusion-LM无需重训模型控制语言模型的表现是自然语言生成(NLG)的一个重要开放问题,近期工作已经在简单句子属性控制生成上取得了一定的进展,但是在复杂的、细粒度的控制上的进展还远远不够。作者指的更复杂,更细粒度的控制:为了解决这一挑战,我们提出了一个基于连续扩散模型的非自回归语言模型,我们称之为Diffusion-LM。Diffusion-LM是
原创
发布博客 2022.12.08 ·
3214 阅读 ·
0 点赞 ·
1 评论 ·
15 收藏

扩散模型(Diffusion Model)原理与代码解析(二)

我们已经明确了要训练pΘ(Xt−1∣Xt)p_{Θ}(X_{t-1}|X_t)pΘ​(Xt−1​∣Xt​),那要怎么确定目标函数呢?有两个很直接的想法,一个是负对数的最大似然概率,即−log⁡pΘ(X0)-\log p_{Θ}(X_0)−logpΘ​(X0​),另一个是真实分布与预测分布的交叉熵,即−Eq(X0)log⁡pΘ(X0)-E_{q(X_0)}\log p_{Θ}(X_0)−Eq(X0​)​logpΘ​(X0​),然而,类似于VAE,由于我们很难对噪声空间进行积分,因此直接优化−log⁡pΘ(X0
转载
发布博客 2022.12.06 ·
1910 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

变分推断(Variational Inference)解析

假设在一个贝叶斯模型中,xxx为一组观测变量,zzz为一组隐变量(参数也看做随机变量,包含在zzz中),则推断问题为计算后验概率密度P=(z∣x)P=(z|x)P=(z∣x)。根据贝叶斯公式,有:p(z∣x)=p(x,z)p(x)=p(x,z)∫p(x,z)dzp(z|x)=\frac{p(x,z)}{p(x)}=\frac{p(x,z)}{\int p(x,z)dz}p(z∣x)=p(x)p(x,z)​=∫p(x,z)dzp(x,z)​但是在实际应用中,可能由于积分没有闭式解,或者是指数级的计算复杂度
原创
发布博客 2022.12.01 ·
5650 阅读 ·
15 点赞 ·
3 评论 ·
63 收藏

Linux服务器非root用户下安装CUDA11.1和cudnn到指定目录

(适用于服务器上管理员已安装好显卡驱动或已安装的CUDA版本无法满足自己要求)1、准备工作首先查看自己服务器系统的信息uname -a lsb_release -a这是我的服务器的信息然后根据版本去官网选择对应版本下载CUDA接着下载cudnn(网址),选择CUDA11.1对应的版本 (需登录nvidia账号,无法用wget,我只能采取本地下载上传到服务器)。选择 “cuDNN Library for Linux”,下载下来是一个tgz的压缩包。最后,提前建好cuda的自定义目录,我
原创
发布博客 2021.11.09 ·
10728 阅读 ·
31 点赞 ·
9 评论 ·
94 收藏

显卡RTX 3090运行pytorch报错CUDA error: no kernel image is available for execution on the device

RuntimeError: CUDA error: no kernel image is available for execution on the device安装适用于GeForce RTX 3090显卡的pytorch卸载当前版本的pytorch, 重新按照以下安装pip uninstall torchpip install torch==1.7.0+cu110 torchvision==0.8.1+cu110 torchaudio===0.7.0 -f https://download.p
原创
发布博客 2021.11.06 ·
2292 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

解决pytorch训练的过程中内存一直增加的问题

代码中存在累加loss,但每步的loss没加item()。pytorch中,.item()方法 是得到一个元素张量里面的元素值具体就是 用于将一个零维张量转换成浮点数,比如计算loss,accuracy的值就比如:loss = (y_pred - y).pow(2).sum()print(loss.item())for epoch in range(100): index=np.arange(train_sample.shape[0]) np.random.shuffle(i
原创
发布博客 2021.09.18 ·
8448 阅读 ·
13 点赞 ·
5 评论 ·
21 收藏

Linux 添加新用户及创建主目录

Linux adduser命令Linux adduser命令用于新增使用者帐号或更新预设的使用者资料。adduser 与 useradd 指令为同一指令(经由符号连结 symbolic link)。使用权限:系统管理员。adduser是增加使用者。相对的,也有删除使用者的指令,userdel。语法:userdel [login ID]语法adduser [-c comment] [-d home_dir] [-e expire_date] [-f inactive_time] [-g initi
原创
发布博客 2021.09.16 ·
41103 阅读 ·
15 点赞 ·
0 评论 ·
107 收藏

GPT-GNN:图神经网络的生成式预训练 KDD 2020

论文链接:https://arxiv.org/pdf/2006.15437.pdf代码链接:https://github.com/acbull/GPT-GNN论文来源:KDD 2020参考文档:https://blog.csdn.net/c9yv2cf9i06k2a9e/article/details/1082313221、简介本文研究如何利用图生成作为自监督任务来预训练 GNN。我们将图的生成概率分解成两个模块:1)节点特征生成;2)图结构生成。通过对这两个模块建模,GPT-GNN 可以捕捉图.
原创
发布博客 2020.08.27 ·
1055 阅读 ·
0 点赞 ·
1 评论 ·
6 收藏

LightGCN:用于推荐任务的简化并增强的图卷积网络 SIGIR 2020

论文链接:https://arxiv.org/abs/2002.02126代码链接:https://github.com/gusye1234/LightGCN-PyTorch论文来源:SIGIR 2020摘要图卷积网络(GCN)已经成为协同过滤的最新技术。然而,对于推荐的有效性的原因却没有很好地解释。现有的将GCN用于推荐的工作缺乏对GCN的深入消融分析,GCN最初是为图分类任务而设计的,并配备了许多神经网络操作。然而,我们实证发现,两种最常见的设计-特征转换和非线性激活-对协同过滤的性能贡献很小.
原创
发布博客 2020.08.04 ·
22387 阅读 ·
32 点赞 ·
8 评论 ·
129 收藏

MOOCCube:基于MOOC相关研究的开源大规模数据仓库 ACL2020

论文链接:http://keg.cs.tsinghua.edu.cn/jietang/publications/ACL20-Yu-Luo-et-al-MOOCCube.pdf数据链接:http://moocdata.cn/data/MOOCCube导读MOOCCube是一个服务于MOOC相关研究的开源大规模数据仓库。和已有类似的教育资源数据库相比它的规模庞大,数据丰富且多样。其中的学生行为记录包括学习时长、学习次数、学习视频的区间等非常完善的学生行为。包含近20万名学生的、总计将近500万人次的视频.
原创
发布博客 2020.08.01 ·
4791 阅读 ·
1 点赞 ·
1 评论 ·
27 收藏

GCC:使用图对比编码的图神经网络预训练模型 KDD2020

论文链接:https://arxiv.org/abs/2006.09963论文来源:KDD 2020摘要图表示学习已经成为解决现实问题的一种强大的技术。节点分类、相似度搜索、图分类和链接预测等各种下游图学习任务都受益于它的最新发展。然而,现有的图表示学习技术侧重于特定领域的问题,并为每个图训练专用的模型,这些模型通常不能转移到域外数据。受最近自然语言处理和计算机视觉的预训练进展的启发,我们设计了图对比编码(GCC)——一个无监督图表示学习框架——来捕获跨多个网络的通用网络拓扑属性。我们将GCC的预训.
原创
发布博客 2020.07.30 ·
1892 阅读 ·
1 点赞 ·
3 评论 ·
7 收藏

ACKRec:注意力异构图卷积深度知识推荐器 SIGIR 2020

论文链接:http://keg.cs.tsinghua.edu.cn/jietang/publications/Sigir20-Gong-et-al-MOOC-concept-recommendation.pdf摘要大规模的在线公开课程(MOOC)正在成为一种流行的教育方式,为学生掌握知识提供了大规模的开放式学习机会。为了吸引学生的兴趣,MOOC提供商使用推荐系统向学生推荐课程。但是,由于一门课程通常包含许多视频讲座,每个讲座都涵盖一些特定的知识概念,因此直接推荐课程会忽略学生对某些特定知识概念的兴趣.
原创
发布博客 2020.07.28 ·
1705 阅读 ·
1 点赞 ·
14 评论 ·
10 收藏

KGPolicy:用于推荐的负采样模型(知识图谱策略网络)WWW 2020

论文链接:https://arxiv.org/pdf/2003.05753.pdf代码链接:https://github.com/xiangwang1223/kgpolicy摘要合理的处理缺失数据在推荐系统中是的一个根本挑战。 目前的大多数工作都是从未观察到的数据中进行负采样,以提供带有负信号的推荐模型训练 。 然而,现有的负采样策略,无论是静态的还是自适应的,都不足以产生高质量的负样本-这既有助于模型训练,也有助于反映用户真实的需求。在这项工作中,我们假设项目知识图(KG),它提供了项目和KG实.
原创
发布博客 2020.07.27 ·
2657 阅读 ·
8 点赞 ·
1 评论 ·
13 收藏

KGSF:通过基于语义融合的知识图谱来改善会话推荐系统 KDD2020

论文链接:https://arxiv.org/pdf/2007.04032.pdf代码链接:https://github.com/RUCAIBox/KGSF1、摘要会话推荐系统(CRS)旨在通过交互式对话向用户推荐高质量的项目。尽管已为CRS做出了一些努力,但仍有两个主要问题有待解决。首先,对话数据本身缺少足够的上下文信息,无法准确地了解用户的偏好。第二,自然语言表达与项目级用户偏好之间存在语义鸿沟。为了解决这些问题,我们结合了面向单词和面向实体的知识图谱(KG)以增强CRS中的数据表示,并采用互.
原创
发布博客 2020.07.27 ·
1947 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

STAR-GCN:用于推荐系统的图卷积神经网络 IJCAI 2019

论文链接:https://www.ijcai.org/Proceedings/2019/0592.pdf代码链接:https://github.com/jennyzhang0215/STAR-GCN论文来源:IJCAI 2019摘要文章针对推荐系统提出了一种新的堆叠和重构图卷积网络(STAR-GCN)结构来学习节点的表征,提高推荐系统的效率,特别是在冷启动场景。STAR-GCN采用一堆GCN编码器/解码器与中间监督相结合,以提高最终预测性能。同图卷积矩阵分解模型用one-hot节点作为输入不同,S.
原创
发布博客 2020.07.26 ·
3319 阅读 ·
2 点赞 ·
4 评论 ·
21 收藏

RippleNet:知识图谱与推荐系统联合学习 CIKM 2018

论文链接:https://arxiv.org/pdf/1803.03467.pdf代码链接:https://github.com/qibinc/RippleNet-PyTorch参考文档:https://zhuanlan.zhihu.com/p/73716930
原创
发布博客 2020.07.24 ·
1750 阅读 ·
1 点赞 ·
6 评论 ·
20 收藏

pytorch学习笔记(7):RNN和LSTM实现分类和回归

参考文档:https://mp.weixin.qq.com/s/0DArJ4L9jXTQr0dWT-350Q在第三篇文章中,我们介绍了 pytorch 中的一些常见网络层。但是这些网络层都是在 CNN 中比较常见的一些层,关于深度学习,我们肯定最了解的两个知识点就是 CNN 和 RNN。那么如何实现一个 RNN 呢?这篇文章我们用 RNN 实现一个分类器和一个回归器。本文需要你最好对 RNN 相关的知识有一个初步的认识,然后我会尽可能的让你明白在 pytorch 中是如何去实现这一点的。1、pytor
原创
发布博客 2020.07.22 ·
14145 阅读 ·
25 点赞 ·
8 评论 ·
106 收藏

pytorch学习笔记(6):GPU和如何保存加载模型

参考文档:https://mp.weixin.qq.com/s/kmed_E4MaDwN-oIqDh8-tg上篇文章我们完成了一个 vgg 网络的实现,那么现在已经掌握了一些基础的网络结构的实现,距离一个入门炼丹师还有两个小问题需要注意一下:GPU 和保存模型。提起炼丹大家经常可以听到显卡如何如何的,也就是 GPU 在炼丹的过程中起到重要的作用。另一方面,训练了一个模型后,我们肯定要用它来进行一些预测,前面的代码中都是将训练好的模型直接进行预测,但是如果代码每次预测都要训练一次岂不是麻烦死了,所以将训练
原创
发布博客 2020.07.22 ·
1900 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多