自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3129)
  • 收藏
  • 关注

原创 【风电功率预测】【多变量输入单步预测】基于TCN的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化、低碳化转型的大趋势下,风力发电凭借其可再生、无污染的特性,装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素综合影响,呈现出显著的随机性和波动性,这给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。精准的风电功率预测是保障电力可靠供应、优化能源配置的关键,时序卷积网络(TCN)在时序数据处理方面具有独特优势,本文构建基于 TCN 的风电功率预测模型,利用多变量输入进行单步预测,旨在提高风电功率预测的准确性与可靠性。关键词风电功率预测;多变量输入;

2025-06-11 23:55:53 484

原创 【风电功率预测】【多变量输入单步预测】基于BiTCN-SVM的风电功率预测研究附Matlab代码

在全球能源结构向清洁化转型的浪潮中,风力发电凭借可再生、无污染等优势,装机规模不断攀升。但风电功率受风速、风向、气温等多因素干扰,呈现出显著的随机性与波动性,严重影响电力系统稳定运行与调度规划。精确的风电功率预测是保障电力可靠供应、优化能源配置的关键。双向时序卷积网络(BiTCN)在时序特征提取上独具优势,支持向量机(SVM)在回归任务中表现出色。本文构建基于 BiTCN - SVM 的风电功率预测模型,利用多变量输入进行单步预测,致力于提升风电功率预测的准确性与可靠性。关键词风电功率预测;多变量输入。

2025-06-11 23:54:07 506

原创 【风电功率预测】【多变量输入单步预测】基于CNN-LSTM的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化、低碳化转型的进程中,风力发电作为可再生能源的重要组成部分,其装机规模持续快速增长。然而,风电功率受风速、风向、气温等多种因素综合影响,呈现出显著的随机性与波动性,这给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。精确的风电功率预测是实现电力系统优化调度、保障电力可靠供应的关键环节。

2025-06-11 23:51:34 497

原创 【风电功率预测】【多变量输入单步预测】基于TCN-GRU-Attention的风电功率预测研究附Matlab代码

在全球能源结构加速向绿色低碳转型的趋势下,风力发电作为可再生能源的关键力量,装机规模持续攀升。但风电功率受风速、风向、气温等多因素综合影响,呈现出强烈的随机性与波动性,给电力系统的稳定运行、调度规划带来巨大挑战。精确的风电功率预测是保障电力可靠供应、优化能源配置的关键。时序卷积网络(TCN)在时序特征提取上表现优异,门控循环单元(GRU)擅长处理序列数据,注意力机制(Attention)能聚焦关键信息。

2025-06-11 23:48:33 308

原创 【风电功率预测】【多变量输入单步预测】基于CNN-GRU的风电功率预测研究附Matlab代码

在全球积极推动能源结构转型的背景下,风力发电作为可再生能源的重要组成部分,其装机规模不断扩大。但风电功率受风速、风向、气温等多因素影响,呈现出显著的随机性与波动性,给电力系统稳定运行和调度带来巨大挑战。卷积神经网络(CNN)在特征提取方面表现出色,门控循环单元(GRU)擅长处理时序数据,本文构建基于 CNN - GRU 的风电功率预测模型,利用多变量输入进行单步预测,旨在提升风电功率预测的准确性,为电力系统优化调度提供支持。关键词风电功率预测;多变量输入;单步预测;CNN;GRU一、引言。

2025-06-11 23:46:07 459

原创 【风电功率预测】【多变量输入单步预测】基于RVM-Adaboost的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的大背景下,风力发电作为可再生能源的重要组成部分,其装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素的综合影响,呈现出显著的随机性和波动性,这给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。准确的风电功率预测是实现电力系统优化调度、保障电力可靠供应的关键环节。相关向量机(Relevance Vector Machine,RVM)作为一种基于贝叶斯框架的稀疏概率模型,在回归任务中表现出色;Adaboost 算法通过迭代训练多个弱学习器来提升整体性能。

2025-06-11 23:42:53 226

原创 【风电功率预测】【多变量输入单步预测】基于CNN-SVM的风电功率预测研究附Matlab代码

在全球积极推动能源结构向清洁化转型的进程中,风力发电作为可再生能源的重要支柱,其装机规模持续扩大。但风电功率受风速、风向、气温等多因素干扰,呈现出显著的随机性与波动性,严重影响电力系统的稳定运行与调度规划。准确的风电功率预测对电网优化资源配置、保障电力稳定供应意义重大。卷积神经网络(CNN)在特征提取方面表现卓越,支持向量机(SVM)在分类和回归任务中优势明显。本文提出基于 CNN - SVM 的风电功率预测模型,采用多变量输入进行单步预测,旨在提升风电功率预测的准确性与可靠性。关键词风电功率预测;

2025-06-11 23:40:38 416

原创 【风电功率预测】【多变量输入单步预测】基于RF-Adaboost的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁能源转型的背景下,风力发电作为可再生能源的重要组成部分,装机容量持续增长。然而,风电功率受风速、风向、气温等多因素影响,具有显著的随机性和波动性,给电力系统的稳定运行与调度带来挑战。准确的风电功率预测对电网优化调度、保障电力供应至关重要。随机森林(Random Forest,RF)作为一种集成学习算法,在处理非线性数据方面表现出色;Adaboost 算法通过迭代训练提升模型性能。

2025-06-11 23:38:38 697

原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

在全球积极推进能源结构清洁化转型的大背景下,风力发电作为可再生能源的重要组成部分,其装机规模持续快速扩张。然而,风电功率受风速、风向、气温、气压、湿度等众多因素的综合影响,呈现出显著的随机性与波动性特征。这种不稳定特性给电力系统的稳定运行、调度规划以及电力供需平衡带来了巨大挑战。实现高精度的风电功率预测,成为保障电力资源合理配置、提升电力系统运行效率与可靠性的关键所在。

2025-06-11 23:35:19 423

原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的当下,风电作为重要的可再生能源,其装机容量不断攀升。然而,风电功率受风速、风向、气温等多种因素干扰,呈现出强烈的随机性与波动性,给电力系统稳定运行和调度带来巨大挑战。精确的风电功率预测是实现电力资源优化配置的关键。本文提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)相结合的 CNN - BiGRU 模型,用于风电功率的多变量输入单步预测。该模型利用 CNN 自动提取多变量数据的局部特征,BiGRU 挖掘数据的双向时序依赖关系,从而实现高精度的风电功率预测。

2025-06-11 23:31:03 412

原创 【风电功率预测】【多变量输入单步预测】基于CNN-BiLSTM-Attention的风电功率预测研究附Matlab代码

在全球能源转型加速推进的背景下,风电作为可再生能源的重要组成部分,其装机容量持续攀升。但风电功率受风速、风向、气温等多因素影响,呈现出强烈的随机性与波动性,给电力系统的稳定运行和调度带来严峻挑战。准确的风电功率预测是实现电力资源优化配置的关键。本文提出一种基于卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)相结合的 CNN - BiLSTM - Attention 模型,用于风电功率的多变量输入单步预测。

2025-06-11 23:16:29 165

原创 【风电功率预测】【多变量输入单步预测】基于CNN-RVM的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的趋势下,风电作为重要的可再生能源,其装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素影响,呈现出显著的随机性和波动性,给电力系统的稳定运行和调度带来巨大挑战。准确的风电功率预测是实现电力系统可靠运行与高效调度的关键。本文提出一种基于卷积神经网络(CNN)与相关向量机(RVM)相结合的 CNN - RVM 模型,用于风电功率的多变量输入单步预测。该模型利用 CNN 自动提取多变量数据的深层次特征,结合 RVM 强大的回归能力,实现对风电功率的精准预测。

2025-06-11 22:58:17 779

原创 【风电功率预测】【多变量输入单步预测】基于CNN的风电功率预测研究附Matlab代码

在能源结构加速转型的当下,风电作为清洁能源的重要组成部分,其装机容量不断攀升。然而,风电功率受风速、风向、气温等多因素影响,呈现出显著的随机性与波动性,这给电网稳定运行和调度带来巨大挑战。卷积神经网络(CNN)凭借强大的特征提取能力,在处理复杂数据时表现出色。本文构建基于 CNN 的风电功率预测模型,以多变量作为输入进行单步预测,旨在通过挖掘数据特征,提高风电功率预测的准确性,为电网调度提供可靠依据。关键词风电功率预测;多变量输入;单步预测;卷积神经网络一、引言。

2025-06-11 22:52:14 429

原创 【风电功率预测】【多变量输入单步预测】基于TCN-BiGRU的风电功率预测研究附Matlab代码

在全球能源结构加速向清洁化转型的背景下,风电作为重要的可再生能源,其装机容量持续快速增长。然而,风电功率受风速、风向、气温等多种因素影响,呈现出较强的随机性和波动性,给电网的稳定运行和调度带来了巨大挑战。准确的风电功率预测是解决这一问题的关键。本文提出一种基于时间卷积网络(Temporal Convolutional Network,TCN)和双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)的混合深度学习模型,用于风电功率的多变量输入单步预测。

2025-06-11 22:49:59 509

原创 【风电功率预测】【多变量输入单步预测】基于SVM-Adaboost的风电功率预测研究附Matlab代码

在全球能源结构向清洁风电作为重要的可再生能源,其功率预测对电网稳定运行和能源调度至关重要。由于风电功率受风速、风向、气温、气压等多种因素影响,具有较强的随机性和波动性,采用多变量输入的单步预测方法是提高预测精度的关键。本文提出基于支持向量机(SVM)与 Adaboost 相结合的 SVM - Adaboost 模型用于风电功率预测,通过引入多变量作为输入,利用 SVM 的非线性拟合能力和 Adaboost 的集成学习优势,实现风电功率的精准预测。

2025-06-11 22:47:20 328

原创 【负荷预测】基于BiLSTM-KAN的负荷预测研究附Python代码

在智能电网数字化转型的关键阶段,精准的电力负荷预测是实现电力资源优化配置、保障电网稳定运行的核心技术。电力负荷数据受气象条件、社会经济活动、用户用电习惯等多种因素交互影响,呈现出高度复杂的非线性与动态变化特征。传统预测模型难以充分挖掘负荷数据背后的复杂关联,为此,本文创新性地提出基于 BiLSTM-KAN 的负荷预测模型,通过融合双向长短期记忆网络(BiLSTM)与知识图谱注意力网络(KAN),为负荷预测提供全新的技术路径。一、BiLSTM-KAN 模型原理1.1 BiLSTM:时序特征深度挖掘。

2025-06-10 12:45:56 671

原创 【负荷预测】基于CNN-GRU-Attention的负荷预测研究附Python代码

智能电网建设与电力市场化改革不断推进的背景下,精准的电力负荷预测是保障电网稳定运行、优化资源调度、降低运营成本的关键环节。电力负荷数据受气象条件、用户行为、经济活动等多因素影响,呈现出非线性、时变性和复杂性等特点,传统预测方法难以满足高精度预测需求。为此,本文提出基于 CNN-GRU-Attention 的负荷预测模型,通过融合卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制(Attention),为负荷预测提供新的技术路径。一、CNN-GRU-Attention 模型原理。

2025-06-10 12:43:11 856

原创 【负荷预测】基于BiTCN-BiGRU的负荷预测研究附Python代码

在智能电网快速发展的背景下,电力负荷预测作为保障电网稳定运行、优化资源配置的关键环节,面临着诸多挑战。电力负荷数据具有非线性、时变性以及多源性等复杂特征,传统预测方法难以精准捕捉其变化规律。为此,本文提出基于 BiTCN-BiGRU 的负荷预测模型,通过融合双向时间卷积网络(BiTCN)与双向门控循环单元(BiGRU),为负荷预测提供新的有效途径。一、BiTCN-BiGRU 模型原理1.1 BiTCN:时间特征提取利器。

2025-06-10 12:42:01 802

原创 【负荷预测】基于CNN-BiLSTM-Attention的负荷预测研究附Python代码

在智能电网迈向数字化、智能化的进程中,精准的电力负荷预测成为平衡电力供需、保障电网稳定运行的核心技术。电力负荷数据因受气象条件、用户行为、经济活动等多因素影响,呈现出高度非线性与复杂动态变化特征,传统预测方法难以满足日益增长的预测精度需求。为此,本文提出基于 CNN-BiLSTM-Attention 的负荷预测模型,通过深度融合卷积神经网络、双向长短期记忆网络与注意力机制,探索负荷预测的新突破。一、CNN-BiLSTM-Attention 模型原理1.1 CNN:空间特征挖掘引擎。

2025-06-10 12:40:08 723

原创 【负荷预测】基于CEEMDAN-CNN-LSTM的负荷预测研究附Python代码

在智能电网建设加速推进的背景下,电力负荷预测作为保障电网稳定运行、实现资源优化配置的核心技术,面临着更高要求。电力负荷数据具有非线性、时变性和多源性等复杂特征,传统预测方法难以精准捕捉其内在规律。为此,本文提出基于 CEEMDAN-CNN-LSTM 的负荷预测模型,通过融合先进的数据分解技术、特征提取算法和时序分析模型,为负荷预测提供更高效、精准的解决方案。一、CEEMDAN-CNN-LSTM 模型原理1.1 CEEMDAN 数据分解技术。

2025-06-10 12:38:46 733

原创 【负荷预测】基于CNN-LSTM的负荷预测研究附Python代码

在智能电网蓬勃发展的当下,精准的电力负荷预测成为保障电网稳定运行、实现电力资源合理配置的关键。电力负荷数据具有高度的非线性、时变性与复杂性,传统预测方法在应对这些特性时往往存在局限性。为此,本文提出基于 CNN-LSTM 的负荷预测模型,通过将卷积神经网络(CNN)与长短期记忆网络(LSTM)相结合,为负荷预测提供新的高效解决方案。一、CNN-LSTM 模型原理1.1 CNN:数据特征提取先锋卷积神经网络(CNN)以局部感知和权值共享两大特性,在数据特征提取领域表现卓越。

2025-06-10 12:37:12 868

原创 【负荷预测】基于CEEMDAN-CNN-BiGRU的负荷预测研究附Python代码

在电力系统智能化转型的背景下,准确的电力负荷预测是实现电网稳定运行、优化资源调度的核心环节。电力负荷数据具有显著的非线性、时变性和复杂性,传统预测方法难以精准捕捉其变化规律。为此,本文提出基于 CEEMDAN-CNN-BiGRU 的负荷预测模型,通过融合先进的数据分解技术、特征提取算法和时序分析模型,为负荷预测提供更高效、精准的解决方案。一、CEEMDAN-CNN-BiGRU 模型原理1.1 CEEMDAN 数据分解技术。

2025-06-10 12:35:38 887

原创 【负荷预测】基于CNN-BiLSTM-Attention的负荷预测研究附Python代码

在智能电网建设持续推进的当下,精准的电力负荷预测是保障电网稳定运行、优化资源调度的关键。电力负荷数据具有高度的非线性与复杂性,传统预测方法难以有效捕捉其内在规律。为此,本文提出基于 CNN-BiLSTM-Attention 的负荷预测模型,通过融合卷积神经网络、双向长短期记忆网络与注意力机制,为负荷预测提供新的技术路径。一、CNN-BiLSTM-Attention 模型原理1.1 CNN:空间特征提取核心卷积神经网络(CNN)凭借局部感知与权值共享的特性,在数据特征提取方面表现卓越。

2025-06-10 12:27:26 773

原创 【负荷预测】基于CEEMDAN-CNN-BiLSTM的负荷预测研究附Python代码

在电力系统智能化与高效化发展进程中,负荷预测是实现电力资源合理分配、保障电网稳定运行的关键环节。电力负荷数据具有非线性、时变性和复杂性等特点,传统预测方法难以精准捕捉其变化规律。为此,本文提出基于 CEEMDAN-CNN-BiLSTM 的负荷预测模型,通过多算法融合,为负荷预测提供更优解决方案。一、CEEMDAN-CNN-BiLSTM 模型原理1.1 CEEMDAN 数据分解技术CEEMDAN(自适应噪声完备集合经验模态分解)是一种先进的信号分解方法。

2025-06-10 12:25:53 625

原创 【负荷预测】基于CEEMDAN-LSTM的负荷预测研究附Python代码

在电力系统智能化转型的浪潮下,电力负荷预测作为保障电网稳定运行、实现供需平衡的核心技术,其重要性愈发凸显。电力负荷数据具有显著的非线性、时变性和复杂性,传统预测方法在应对这些特性时往往力不从心。为此,本文提出基于 CEEMDAN-LSTM 的负荷预测模型,通过将先进的数据分解技术与强大的深度学习模型相结合,为负荷预测提供更精准、有效的解决方案。一、CEEMDAN-LSTM 模型原理1.1 CEEMDAN 数据分解技术。

2025-06-10 12:23:44 680

原创 【负荷预测】基于Gradient-boosting的负荷预测研究附Python代码

在智能电网快速发展与电力需求日益复杂的背景下,准确的电力负荷预测是保障电网稳定运行、优化资源配置的关键环节。传统预测方法在处理非线性、多变的负荷数据时,往往难以达到理想效果。而 Gradient-boosting(梯度提升)算法凭借其强大的拟合能力与集成学习优势,为负荷预测提供了新的思路与方向。本文深入探讨基于 Gradient-boosting 的负荷预测方法,分析其原理、应用过程及实际效果。一、Gradient-boosting 算法原理剖析1.1 集成学习基础。

2025-06-10 12:22:37 557

原创 【没发表过的创新点】【多变量输入单步预测】基于CEEMDAN-VMD-CNN的风电功率预测研究附Matlab代码

双碳” 目标的驱动下,风电作为清洁能源的重要组成部分,其发电规模持续扩大。然而,风电功率的随机性和波动性给电网稳定运行带来挑战,精准的风电功率预测成为关键。本文创新性地提出 基于 CEEMDAN-VMD-CNN-BiLSTM 的多变量输入单步预测模型 ,通过算法融合与技术创新,为风电功率预测提供新方案。一、创新模型架构解析1.1 CEEMDAN 与 VMD 联合数据分解传统的单一分解方法在处理复杂风电功率数据时,难以全面捕捉数据特征。

2025-06-10 12:20:19 703

原创 【没发表过的创新点】【多变量输入单步预测】基于CEEMDAN-VMD-CNN-BILSTM的风电功率预测研究附Matlab代码

在 “双碳” 目标的驱动下,风电作为清洁能源的重要组成部分,其发电规模持续扩大。然而,风电功率的随机性和波动性给电网稳定运行带来挑战,精准的风电功率预测成为关键。本文创新性地提出 基于 CEEMDAN-VMD-CNN-BiLSTM 的多变量输入单步预测模型 ,通过算法融合与技术创新,为风电功率预测提供新方案。一、创新模型架构解析1.1 CEEMDAN 与 VMD 联合数据分解传统的单一分解方法在处理复杂风电功率数据时,难以全面捕捉数据特征。

2025-06-10 12:15:11 597

原创 【负荷预测】基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测研究附Python代码

在能源领域智能化、高效化的发展浪潮中,电力负荷预测是电网稳定运行与资源合理配置的核心环节。传统预测方法在应对复杂多变的负荷数据时,常面临精度不足的难题。为此,本文提出基于CEEMDAN-CNN-BiLSTM-Attention的负荷预测模型,通过多算法融合与注意力机制的引入,实现对负荷数据更精准的分析与预测。一、CEEMDAN-CNN-BiLSTM-Attention 模型深度解析1.1 CEEMDAN:数据分解基石。

2025-06-10 12:13:14 697

原创 【多变量输入单步预测】基于CEEMDAN-CNN-BiLSTM的风电功率预测研究附Matlab代码

在全球积极推动能源转型与可持续发展的大背景下,风电作为一种清洁、可再生的能源,在能源结构中的地位愈发关键。随着风电装机容量在全球范围内的迅速攀升,其在能源供应体系中所占的比重也日益增加。据相关数据显示,截至 [具体年份],全球风电累计装机容量已突破 [X] GW,成为了能源领域中不可忽视的重要力量。在我国,风电同样发展迅猛,众多大型风电基地如酒泉千万千瓦级风电基地、蒙东风电基地等相继建成,为我国能源结构的优化做出了巨大贡献。风电功率预测对于电网调度和电力系统的稳定运行起着举足轻重的作用。

2025-06-10 12:10:49 822

原创 【配电网规划】SOCPR和基于线性离散最优潮流(OPF)模型的配电网规划( DNP )附Matlab代码

一、研究背景与意义随着分布式电源(如光伏、风电)的大规模接入以及电动汽车等新型负荷的快速增长,配电网的结构和运行特性发生了显著变化,其规划面临着更高的复杂性和不确定性。传统的配电网规划方法难以适应这种变化,无法有效解决分布式电源接入带来的电压波动、潮流阻塞等问题。因此,寻求更先进、更有效的配电网规划模型和方法至关重要。二阶锥规划松弛(SOCPR)和线性离散最优潮流(OPF)模型在处理复杂约束和优化目标方面具有独特优势,能够为配电网规划提供更精准的解决方案。

2025-06-09 20:23:45 493

原创 【雷达】基于Matlab的雷达SAR成像仿真附Matlab代码

一、研究背景合成孔径雷达(Synthetic Aperture Radar,SAR)作为一种高分辨率、全天时、全天候的微波遥感成像技术,在地形测绘、灾害监测、军事侦察、海洋观测等众多领域发挥着不可替代的重要作用。随着 SAR 技术的不断发展,新体制、新算法层出不穷,对其成像性能的研究与优化需求愈发迫切。通过雷达 SAR 成像仿真,能够在不依赖实际飞行试验的情况下,快速验证成像算法的有效性,分析系统参数对成像质量的影响,降低研发成本与风险,为 SAR 系统的设计、优化和应用提供有力支撑。

2025-06-09 20:21:04 790

原创 【电力系统】计及调峰主动性的风光水火储多能系统互补协调优化调度附Matlab代码

一、研究背景与意义在全球能源转型与 “双碳” 目标的驱动下,以风能、太阳能为代表的可再生能源发电规模持续扩大。然而,风光能源具有随机性、间歇性和波动性的特点,大规模接入电网后,给电力系统的稳定运行带来了巨大挑战,其中调峰问题尤为突出。传统的火电虽然具备一定调峰能力,但存在能耗高、污染大的问题,难以满足低碳环保的要求;水电受自然条件制约,调峰能力有限且存在季节性波动;单一储能系统的容量和响应速度也存在局限性。

2025-06-09 20:19:41 469

原创 【单变量输入多步预测】基于CNN-BiGRU的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大背景下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:16:29 630

原创 【单变量输入多步预测】基于CNN-BiLSTM-Attention的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:11:54 796

原创 【单变量输入多步预测】基于TCN-BiGRU的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:09:52 979

原创 【单变量输入多步预测】基于TCN-BiGRU的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:08:03 533

原创 【单变量输入多步预测】基于CNN-LSSVM的风电功率预测研究附Matlab代码

一、研究背景与意义在全球积极推动能源结构转型,大力发展清洁能源的大背景下,风力发电凭借其清洁、可再生的特性,成为电力供应的重要组成部分,装机容量持续快速增长。然而,风电功率受风速、风向、气温、气压等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度计划制定、稳定运行保障以及电力市场交易带来诸多挑战。精确的风电功率预测,能够助力电力系统科学规划发电计划,合理调配资源,有效降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:04:20 661

原创 【单变量输入多步预测】基于CNN-LSTM的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源结构加速向清洁能源转型的大趋势下,风力发电作为重要的可再生能源发电方式,其装机容量不断攀升,在电力供应体系中的地位愈发关键。然而,风电功率受风速、风向、气温等自然因素影响,具有显著的随机性和间歇性。这种不稳定特性给电力系统的调度、稳定运行以及电力市场交易带来巨大挑战。精确的风电功率预测,有助于电力系统科学规划发电计划、优化资源配置、降低运营成本,同时提高电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 20:02:08 899

原创 【单变量输入多步预测】基于TCN-BiGRU-Attention的风电功率预测研究附Matlab代码

一、研究背景与意义在全球能源转型加速推进的当下,风力发电作为清洁能源的重要组成部分,装机规模持续扩大,在电力供应体系中的地位愈发重要。然而,风电功率受风速、风向、气温、气压等自然因素影响,呈现出显著的随机性和间歇性。这种不稳定特性给电力系统的调度运行、资源配置以及电力市场交易带来诸多挑战。精确的风电功率预测,有助于电力系统科学制定发电计划、优化资源分配、降低运营成本,同时提升电网对风电的消纳能力,减少弃风现象,推动清洁能源的高效利用。

2025-06-09 19:59:05 713

2023Q1中国房地产金融分析:小阳春行情及其可持续性的探讨

本文详细分析了2023年第一季度中国房地产市场的政策、市场运行、个人住房金融和房企融资形势。政策方面,政府推出了多项措施以促进房地产市场健康稳定发展,包括首套房贷利率动态调整、不动产‘带押过户’服务等。市场运行方面,房价止跌回升,住房销售市场回暖,但市场分化明显,三线城市库存压力较大。个人住房金融方面,个人住房贷款余额增速下滑,首套房贷利率下调,放款周期缩短。房企融资方面,开发贷款余额增速回升,信托规模持续压降,境内、外债发行规模上升。然而,提前还贷潮和个人住房贷款早偿率上升成为新的关注点。对于未来的‘小阳春’行情是否可持续,文中表达了谨慎态度,指出市场分化严重,消费者购房需求不稳定,房企投资意愿不强。 适合人群:房地产从业者、金融分析师、政策制定者及相关研究人员。 帮助读者了解2023年第一季度中国房地产市场的现状和发展趋势,评估相关政策的效果,预测未来市场走向。 文章基于国家金融与发展实验室的研究成果,提供了详尽的数据支撑和深入的分析,有助于全面把握房地产金融领域的动态。

2025-03-27

CRIC周报成都市房地产市场(第28周,2023.07.10-2023.07.16)-24页.pdf

【CRIC周报】成都市房地产市场

2025-03-27

六轴机械臂控制系统设计及仿真-毕业设计.docx

六轴机械臂控制系统设计及仿真-毕业设计

2025-03-24

可再生能源风能光伏电解水制氢技术经济评价.docx

可再生能源风能光伏电解水制氢技术经济评价

2025-03-23

核电站凝汽器性能仿真与优化研究.docx

冷链物流路径优化与调度模型研究 - 遗传算法求解及应用

2025-03-18

磨料射流破岩应力分析:磨料粒子和超临界CO2气体应力的力学计算

内容概要:本文详细探讨了磨料射流破坏岩石过程中涉及的各种应力分析方法。首先基于理想化假设推导出应力的基本形式,并引用了Hill等人和梅尔的研究来分析塑性接触力学关系及其应用。此外,考虑到流体力学的作用,进一步讨论了射流本身以及其所携带颗粒对岩石造成的冲击,特别是在冲击瞬间由于材料特性导致的不同应力分布情况。对于特定条件下(如存在CO2流体),文章还展示了如何结合两者产生的合力来进行全面的应力评价,以解释实际工业应用中存在的问题并给出相应解决方案。 适用人群:地质工程及相关专业的研究人员和技术人员。 使用场景及目标:适用于研究破岩机制,特别是当涉及到高效破岩工具的设计开发时。通过对磨料射流破岩机理深入剖析可以帮助工程师优化设计方案,提高开采效率同时降低能耗成本。 其他说明:文章不仅包含了理论推导部分,同时也提供了实用性的数值实例帮助读者更好地理解和掌握相关概念。这使得本文献成为一个既具学术价值又可用于指导实际工作的综合性参考资料。

2025-03-18

帆软:文旅地产经营分析平台方案

帆软:文旅地产经营分析平台方案

2025-03-16

2025年薪酬的潜力:全球薪酬管理调研

2025年薪酬的潜力:全球薪酬管理调研

2025-03-16

ACCES-计及对称型源荷时空分布特性的主动配电网潮流分布研究

ACCES-计及对称型源荷时空分布特性的主动配电网潮流分布研究

2025-03-14

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

各类软硬件和产品的用户手册、配置方法、性能参数

各类软硬件和产品的用户手册、配置方法、性能参数

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

Delphi教程&案例&相关项目资源

Delphi教程&案例&相关项目资源

2024-12-08

【医美行业运营】医美机构社群裂变营销策略:构建高效用户增长与互动体系

内容概要:本文详细探讨了医美机构如何通过社群裂变营销实现用户存量及增量的提升。文章首先阐述了医美营销的战略框架,涵盖定战略、建团队、营销链和用户圈四个层面,强调营销链各环节的协同效应,如新媒体营销带动网电微咨询,进而推动现场咨询和医护服务,最终形成良性循环。接着重点介绍了社群营销的概念、构成要素(同好、生态、输出、运营、复制)及其在医美行业的具体应用方式,如演讲招商、会议培训、鱼塘营销、售后服务、互动零售和媒体传播。文章指出,通过构建稳定的社群矩阵,医美机构可以在微信生态中实现用户的深度绑定和裂变式增长。 适合人群:医美行业从业者,尤其是负责市场推广、品牌建设和客户服务的相关人员。 使用场景及目标:①帮助医美机构制定有效的社群营销策略,提升品牌知名度和客户忠诚度;②通过社群运营实现用户的精准转化和多次消费;③利用社群矩阵扩大品牌影响力,促进跨行业合作和资源整合。 其他说明:社群营销的成功关键在于长期积累和精细化运营,文章建议从业者应重视社群生态的建设和维护,逐步培养用户的信任感和归属感,从而实现可持续的业务增长。

2025-04-17

腾讯广告&零一数科:视频号激活美妆全域经营-腾讯美妆视频号运营指南.pdf

腾讯广告&零一数科:视频号激活美妆全域经营-腾讯美妆视频号运营指南

2025-04-17

【医美整形行业】基于小红书数据的内容洞察与用户画像分析:搜索趋势及热门项目解析

本文基于小红书内部数据,深入剖析了2023年医美整形行业的现状与趋势。过去一年,搜索医美整形相关内容的用户数超过4300万,尤其在寒暑假期间搜索指数显著上升。用户主要集中在一线城市如上海、北京、广州和深圳。不同年龄段用户的关注点各异:19-23岁的用户更关注双眼皮手术和牙齿矫正;24-28岁用户倾向于美白嫩肤类项目;29-33岁及以上用户则对光子嫩肤、超声炮和少女针表现出更高兴趣。此外,文中还详细分析了多个热门医美项目的用户画像及其上下游关联词,如超声炮、热玛吉、皮秒、光子嫩肤等,揭示了用户对项目安全性和效果的关注。;

2025-04-17

2022年中国房地产精装修市场热水器与净水器配套规模及品牌竞争格局分析

内容概要:本文基于奥维云网(AVC)地产大数据,详细分析了2022年中国房地产精装修市场中热水器和净水器的配套规模及其变化趋势。数据显示,尽管热水器和净水器的配置率逐年上升,但2022年两者配套项目的数量和规模均有不同程度下降。具体来看,热水器配套项目个数为1041个,同比下降28.9%,配套规模为79.1万套,同比下降32.8%;净水器配套项目个数为511个,同比下降32.2%,配套规模为34.26万套,同比下降44.1%。此外,文中还对不同城市级别的配套规模进行了分析,指出新一线城市的需求最高,分别占到热水器市场的47.8%和净水器市场的48.4%。品牌竞争格局方面,热水器市场TOP5品牌占据超过50%的市场份额,净水器市场TOP5品牌占据约64.2%的市场份额,头部品牌格局较为稳定。 适合人群:从事房地产精装修市场研究的专业人士、家电制造商、经销商以及关注房地产市场动态的投资人。 使用场景及目标:帮助相关企业了解市场现状和发展趋势,制定合理的营销策略和产品布局,提高市场竞争力。 其他说明:数据来源于奥维云网(AVC)地产大数据平台,涵盖了2017年至2022年的历史数据,提供了详

2025-03-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除