- 博客(5874)
- 收藏
- 关注
原创 【低压配电网】【对单相接地低压电网监测方案性能】在径向低压测试馈线上使用WLS状态估计器的性能,由于测量误差的随机性质,分析以蒙特卡洛方式进行附Matlab代码
在低压配电网运行过程中,单相接地故障是高发故障类型,精准的状态监测与估计是保障电网安全稳定运行的关键。径向结构是低压配电网的典型拓扑形式,基于该拓扑的测试馈线是验证状态估计器性能的常用载体。加权最小二乘(WLS)状态估计器因具备良好的收敛性和估计精度,被广泛应用于配电网状态监测领域。由于配电网实际运行中的测量数据不可避免地存在随机误差(如传感器测量噪声、数据传输误差等),这类随机误差会直接影响WLS状态估计器的估计结果准确性。
2026-01-15 20:29:59
275
原创 【低PAPR、低延迟、高谱效率】一种新型调制方案,结合了滤波器组多载波(FBMC)偏移正交幅度调制(OQAM)和单载波频分多址(SC-FDMA)的优势研究附Matlab代码
在5G及后5G无线通信系统中,增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和海量机器类通信(mMTC)等多元应用场景对调制技术提出了严苛要求,低峰均功率比(PAPR)、低传输延迟、高频谱效率成为核心性能指标。当前主流调制技术存在难以兼顾多维度性能的短板:正交频分复用(OFDM)虽易与多输入多输出(MIMO)技术融合,但带外辐射高、对同步误差敏感且依赖循环前缀(CP),导致频谱效率受限;
2026-01-15 20:29:10
376
原创 【单悬臂梁】基于梯度缺陷ANCF梁单元的单悬臂梁在重力作用下的弯曲MATLAB仿真,采用显式时间步进算法研究附Matlab代码
单悬臂梁作为工程结构中常见的基础构件,其在重力等静载荷作用下的弯曲变形特性是结构力学分析的重要基础。绝对节点坐标公式(Absolute Nodal Coordinate Formulation, ANCF)凭借其无需更新旋转矩阵、可精确描述大变形大转动问题的优势,在柔性体动力学仿真中得到广泛应用。然而,传统ANCF梁单元存在“剪切锁死”和“薄膜锁死”等数值缺陷,影响小变形或低载荷下仿真结果的精度。
2026-01-15 20:28:16
574
原创 【单相STATCOM】单相STATCOM在单相系统中补偿无功功率,并减轻谐波附Simulink仿真
【单相STATCOM】作为基于电压源型变流器(VSC)的有源电力电子装置,是改善单相电力系统电能质量的核心设备,其核心功能在于精准补偿系统无功功率、有效减轻谐波污染,为铁路电气化、工业单相负载及居民用电等场景提供稳定可靠的供电保障。
2026-01-15 20:27:07
722
原创 【单仓库多旅行商问题SDMTSP】基于BSLO吸血水蛭优化器求解单仓库多旅行商问题,可以更改数据集和起点附Matlab代码
单仓库多旅行商问题(Single-Depot Multiple Traveling Salesman Problem,SDMTSP)是经典旅行商问题(TSP)的扩展形式,广泛应用于物流配送、路径规划、快递调度等实际场景。其核心需求为:多个旅行商从同一个仓库(起点)出发,遍历指定的所有客户点(需求点),最终返回仓库,要求在满足约束条件(如每个客户点仅被访问一次、旅行商路径不重叠等)的前提下,实现总行程最短、总耗时最少等优化目标。
2026-01-15 20:26:20
624
原创 【带时间窗的车辆路径问题VRPTW】基于灰狼优化算法GWO求解带时间窗的车辆路径问题VRPTW研究附Matlab代码
带时间窗的车辆路径问题(VRPTW)作为经典车辆路径问题(VRP)的重要扩展,是物流配送优化领域的核心问题之一,其核心目标是在满足车辆容量、客户时间窗等多重约束条件下,规划多车辆的配送路径以实现总成本最小化。由于VRPTW属于NP-hard问题,随着客户规模扩大,传统精确算法难以在有效时间内求得最优解。灰狼优化算法(GWO)作为一种模拟灰狼群体狩猎行为的群智能优化算法,具有参数少、全局搜索能力强、探索与开发平衡性能优异等特点。
2026-01-15 20:25:17
416
原创 【带宽感知自适应模式分解】铁路轴承故障诊断的带宽感知自适应模式分解附Matlab代码
铁路轴承作为高速列车走行部的核心关键部件,其运行状态直接关乎行车安全与运输效率。在实际服役过程中,铁路轴承长期面临载荷多变、强电磁干扰、环境恶劣等复杂工况,易引发外圈磨损、内圈裂纹、滚动体损伤等多种故障类型。故障信号往往表现出强烈的非平稳性与非线性特征,且易被背景噪声和其他部件振动信号湮没,给故障特征的精准提取带来严峻挑战。
2026-01-15 20:24:25
442
原创 【大规模多仓库多旅行商问题LS-MDMTSP】基于改进型雪雁算法(ISGA)的大规模多仓库多旅行商问题(LS-MDMTSP)研究附Matlab代码
大规模多仓库多旅行商问题(Large-Scale Multi-Depot Multi-Traveling Salesman Problem, LS-MDMTSP)作为经典组合优化问题的延伸,广泛应用于物流配送、无人机巡检、供应链管理等实际场景,其核心目标是在多仓库协同、大规模客户节点覆盖的约束下实现路径总代价最小化。由于该问题属于NP难问题,传统优化算法在求解时面临收敛速度慢、易陷入局部最优等挑战。
2026-01-15 20:23:33
446
原创 【大规模单仓库多旅行商问题LS-SDMTSP】基于鲸鱼迁徙算法(WMA)的大规模单仓库多旅行商问题(LS-SDMTSP)求解研究附Matlab代码
大规模单仓库多旅行商问题(LS-SDMTSP)作为组合优化领域的经典NP-hard难题,广泛应用于物流配送、无人机集群作业、城市巡检等实际场景,其核心需求是在单一起始仓库约束下,通过多旅行商协同完成大规模客户点的访问任务,实现总行驶里程最小化与调度效率最大化。传统精确算法受限于指数级增长的计算复杂度,难以处理大规模问题;主流启发式算法则普遍存在易陷入局部最优、收敛缓慢等缺陷。为此,本文提出一种基于鲸鱼迁徙算法(WMA)的LS-SDMTSP求解方法。
2026-01-15 20:22:40
429
原创 【创新首发】NRBO-SVM时序预测研究(直接替换运行)附Matlab代码
时序预测作为数据分析领域的核心任务之一,广泛应用于经济金融、能源电力、环境监测等多个关键领域。准确的时序预测能够为决策制定提供科学依据,降低不确定性带来的风险。支持向量机(SVM)作为一种经典的机器学习算法,凭借其在小样本、高维数据场景下的优异泛化性能,被广泛应用于时序预测任务中。然而,传统SVM的核函数参数与惩罚因子难以通过人工精准设定,参数选择的合理性直接影响预测模型的性能上限。为解决这一问题,诸多智能优化算法被用于SVM的参数优化,如粒子群优化(PSO)、遗传算法(GA)等。
2026-01-15 20:21:42
615
原创 【创新首发】ISSA-RBF时序预测:融合柯西变异和反向学习的改进麻雀搜索算法优化RBF时序预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在时序预测中易陷入局部最优、收敛速度慢,且标准麻雀搜索算法(SSA)存在后期搜索精度不足等问题,提出一种融合柯西变异和反向学习的改进麻雀搜索算法(ISSA)优化RBF神经网络的时序预测模型(ISSA-RBF)。该模型首先采用Sin混沌映射初始化种群,提升初始解的遍历性与均匀性;其次在发现者位置更新机制中引入上一代全局最优解与自适应权重,平衡全局探索与局部开发能力并加快收敛速度;最后融合柯西变异算子与反向学习策略对最优解进行扰动优化,增强算法跳出局部最优的能力。
2026-01-14 15:06:54
719
原创 【创新首发】FIVM-RBF回归预测研究:基于特征重要性加权与径向基神经网络的非线性预测模型附Matlab代码
在工业生产监控、金融市场分析、环境质量预测等众多领域,回归预测模型是实现风险预警、决策优化的核心技术支撑。然而,实际应用中的预测任务往往面临高维、非线性、多因素耦合的复杂数据场景,传统回归模型存在明显局限性:多元线性回归、时间序列ARMA等线性模型难以捕捉变量间的复杂交互关系;常规神经网络(如BP神经网络)虽具备一定非线性拟合能力,但未考虑输入特征的冗余性与差异化贡献度,易受噪声特征干扰,导致模型泛化能力不足、预测精度受限。
2026-01-14 15:05:23
425
原创 【创新首发】【TTHHO-SVM时序预测】改进的瞬态三角哈里斯鹰优化算法(TTHHO)优化SVM时序预测研究附Matlab代码
时序预测在金融市场分析、气象预警、工业过程控制等多个关键领域具有不可替代的决策支撑价值,准确捕捉时序数据中的非线性特征与动态变化规律是提升预测性能的核心目标。支持向量机(SVM)作为经典的监督学习模型,在小样本、高维时序数据预测任务中展现出独特优势,但其一性能高度依赖惩罚因子(C)、核函数参数(γ)等关键参数的合理配置,传统参数优化方法易陷入局部最优或存在效率低下的问题。
2026-01-14 15:04:21
485
原创 【创新首发】【NRBO-RBF】基于牛顿-拉夫逊优化算法的RBF神经网络回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在复杂非线性回归预测任务中,依赖梯度下降法优化参数时易陷入局部最优、收敛速度慢且泛化能力有限的缺陷,本文提出一种基于牛顿-拉夫逊优化算法(NRBO)改进的RBF神经网络回归预测模型(NRBO-RBF)。该模型创新性地将NRBO算法引入RBF神经网络的参数优化过程,借助NRBO算法的牛顿-拉夫逊搜索规则(NRSR)利用二阶导数信息提升参数搜索精度,通过陷阱避免算子(TAO)增强全局寻优能力,实现对RBF网络隐层中心、径向基宽度及输出权重的动态优化。
2026-01-14 15:03:25
617
原创 【创新首发】【MSWOA-RBF时序预测】基于混合策略改进的鲸鱼优化算法优化RBF时序预测研究附Matlab代码
时间序列预测作为数据挖掘与智能计算领域的核心研究方向之一,在经济金融、环境监测、工业生产、气象预报等诸多领域具有广泛的应用价值。其核心目标是通过对历史时序数据的规律挖掘,实现对未来数据趋势的精准预判。随着实际应用场景的复杂化,时序数据往往呈现出非线性、非平稳性、高波动性等特征,传统的线性预测模型(如ARIMA模型)已难以满足精准预测的需求。径向基函数(RBF)神经网络作为一种经典的前馈型神经网络,凭借其结构简单、学习速度快、局部逼近能力强等优势,在非线性时间序列预测中得到了广泛应用。
2026-01-14 15:02:17
532
原创 【创新首发】【LEA-RBF回归预测】基于狮群优化算法的径向基神经网络创新研究附Matlab代码
在数据驱动的智能决策时代,回归预测作为捕捉复杂变量间映射关系的核心技术,已广泛应用于电力负荷调度、工业过程控制、资源需求预测等关键领域。径向基函数神经网络(RBF)凭借其独特的局部逼近特性、快速收敛能力以及强大的非线性映射能力,成为回归预测领域的优选模型之一。其通过输入层、隐层(径向基层)与输出层的三层架构,实现输入空间到隐层空间的非线性映射及输出层的线性组合输出,能够有效逼近任意复杂非线性函数,适用于处理难以用解析方法建模的复杂系统。
2026-01-14 15:01:25
710
原创 【创新首发】【JaDE-SVM时序预测】自适应权重差分进化算法(JaDE)优化SVM时序预测研究附Matlab代码
时序预测在金融市场分析、气象预报、交通流量管控、工业过程监控等关键领域具有不可替代的应用价值,其核心目标是通过挖掘历史时序数据中的内在规律,实现对未来趋势的精准预判。支持向量机(SVM)凭借其坚实的统计学习理论基础、优异的非线性映射能力及结构风险最小化特性,在时序预测领域展现出独特优势。然而,SVM的预测性能高度依赖于惩罚参数C与核参数γ的合理配置,传统参数优化方法(如网格搜索、交叉验证)存在效率低下、易陷入局部最优等缺陷,严重制约了其在复杂时序数据场景中的应用效果。
2026-01-14 14:54:55
547
原创 【创新首发】【ISSA-SVM时序预测】融合柯西变异和反向学习的改进麻雀搜索算法优化SVM时序预测研究附Matlab代码
针对传统支持向量机(SVM)在时序预测中核函数参数与惩罚因子难以精准匹配、易导致预测精度不足,以及原始麻雀搜索算法(SSA)存在种群多样性差、早熟收敛等缺陷,提出一种融合柯西变异和反向学习的改进麻雀搜索算法(ISSA),并将其用于优化SVM时序预测模型。该算法首先通过Sin混沌映射初始化种群,提升初始解分布均匀性;在发现者位置更新阶段引入上一代全局最优解与自适应权重,平衡全局探索与局部开采能力;最后在最优解迭代过程中融合柯西变异与反向学习策略,增强算法跳出局部最优的能力。
2026-01-14 14:53:08
761
原创 【创新首发】【ISSA-RBF回归预测】融合柯西变异和反向学习的改进麻雀搜索算法优化RBF回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在回归预测任务中易陷入局部最优、收敛速度慢,且标准麻雀搜索算法(SSA)全局寻优能力不足、后期搜索效率衰减的问题,提出一种融合柯西变异和反向学习的改进麻雀搜索算法(ISSA)优化RBF回归预测模型(ISSA-RBF)。首先,采用Sin混沌映射初始化种群,提升初始解的遍历性与均匀性,为全局寻优奠定基础;其次,在发现者位置更新策略中引入上一代全局最优解与自适应权重,平衡全局探索与局部挖掘能力,加快收敛速度;
2026-01-14 14:51:55
481
原创 【创新首发】【IPSO-SVM时序预测】非线性动态自适应惯性权重的改进粒子群优化算法优化SVM时序预测研究附Matlab代码
时间序列预测作为数据分析与智能决策的核心技术之一,广泛应用于金融市场走势预判、电力负荷调度、气象灾害预警、农业土壤墒情监测等多个关键领域。精准的时序预测能够为决策制定提供科学依据,显著提升资源配置效率与风险防控能力。支持向量机(SVM)凭借其基于结构风险最小化原则的独特优势,在处理非线性、小样本时序数据时展现出良好的泛化性能与鲁棒性,成为时序预测领域的主流模型之一。
2026-01-14 14:50:57
371
原创 【创新首发】【IPOA-SVM时序预测】基于改进鹈鹕优化算法(IPOA)的支持向量机时序预测研究附Matlab代码
为解决传统支持向量机(SVM)在时序预测中参数选择依赖经验、易陷入局部最优的缺陷,提升模型对非线性、高噪声时序数据的预测性能,本文提出一种基于改进鹈鹕优化算法(IPOA)优化SVM的时序预测模型(IPOA-SVM)。该模型结合IPOA的全局搜索能力与自适应优化机制,实现对SVM惩罚参数C和核函数参数γ的动态精准优化。
2026-01-13 09:20:10
340
原创 【创新首发】【HHO-RBF回归预测】基于哈里斯鹰优化算法的RBF神经网络回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在回归预测任务中,依赖梯度下降法优化参数时易陷入局部最优、收敛速度慢且预测精度受限的问题,本文提出一种基于哈里斯鹰优化算法(HHO)改进的RBF神经网络回归预测模型(HHO-RBF)。该模型通过模拟哈里斯鹰群体协同捕食的行为机制,对RBF神经网络的核心参数(中心向量、宽度参数及输出权值)进行全局寻优,有效平衡了算法的全局探索与局部开发能力。
2026-01-13 09:19:19
229
原创 【创新首发】【(改进SSA)ASFSSA-RBF时序预测】基于自适应螺旋飞行麻雀搜索算法的RBF神经网络时序预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在时序预测中存在参数优化困难、易陷入局部最优及泛化能力不足等问题,提出一种基于自适应螺旋飞行麻雀搜索算法(Adaptive Spiral Flying Sparrow Search Algorithm, ASFSSA)优化的RBF神经网络时序预测模型(ASFSSA-RBF)。
2026-01-13 09:18:19
348
原创 【创新首发】【(改进SSA)ASFSSA-RBF回归预测】基于自适应螺旋飞行麻雀搜索算法的RBF神经网络回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在回归预测任务中存在参数优化困难、易陷入局部最优、泛化能力不足等问题,本文提出一种基于自适应螺旋飞行麻雀搜索算法(Adaptive Spiral Flying Sparrow Search Algorithm, ASFSSA)优化的RBF神经网络回归预测模型(ASFSSA-RBF)。
2026-01-13 09:17:15
375
原创 【创新首发】【(改进SSA)ASFSSA-RBF分类预测】基于自适应螺旋飞行麻雀搜索算法的RBF神经网络分类预测研究附Matlab代码
针对传统麻雀搜索算法(SSA)在优化径向基函数(RBF)神经网络参数时易陷入局部最优、收敛精度不足的问题,提出一种基于自适应螺旋飞行麻雀搜索算法(ASFSSA)的RBF神经网络分类预测模型。该模型通过混沌映射初始化、自适应加权、莱维飞行更新及可变螺旋搜索四项核心改进策略,提升算法的全局搜索能力与收敛效率,并将其用于优化RBF神经网络的中心向量、宽度参数及输出层权重。
2026-01-13 09:16:24
221
原创 【传感器】【鲁棒目标定位】基于平方距离迭代重新加权最小二乘法的鲁棒目标定位附Matlab代码
在传感器网络定位、自动驾驶导航、室内机器人巡检等关键领域,目标定位的精度与稳定性直接决定系统运行可靠性。随着应用场景向复杂环境延伸(如城市峡谷、地下隧道、密集人群区域),传感器测量数据不可避免地受到噪声干扰、非视距遮挡、硬件故障等因素影响,产生大量异常值(离群点)。传统最小二乘法(LS)对异常值极度敏感,易导致定位结果严重偏离真实值,无法满足复杂场景下的鲁棒性需求。
2026-01-13 09:15:29
352
原创 【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性附Matlab代码
IMU(惯性测量单元)和GPS(全球定位系统)是现代导航系统中不可或缺的传感器,它们各自提供独特的定位和姿态信息。IMU通过测量角速度和加速度来推算物体的姿态和相对位移,而GPS则提供高精度的绝对位置信息。然而,单一传感器往往存在局限性,例如IMU会随着时间积累误差,而GPS在信号受阻时则无法工作。
2026-01-13 09:14:39
331
原创 【参数辨识】【非线性动力学方程】【非线性惯性力】【非线性阻尼力】【非线性刚度力】【六自由度系统动力学方程】附Python代码
在动力学系统分析与建模领域,【参数辨识】【非线性动力学方程】【非线性惯性力】【非线性阻尼力】【非线性刚度力】【六自由度系统动力学方程】是相互关联的核心概念。其中,六自由度系统动力学方程是复杂系统建模的典型载体,非线性惯性力、阻尼力、刚度力是构成非线性动力学方程的关键力学要素,而参数辨识则是确定这些方程中未知参数、实现模型验证与实用化的核心技术。以下将逐一解析各概念内涵及它们之间的内在联系。
2026-01-13 09:13:48
256
原创 【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)附Simulink仿真
全球能源转型进程加速推动光伏发电渗透率持续提升,光伏并网逆变器作为能源转换与电网接口的核心设备,其动态特性直接决定并网系统的稳定性与电能质量。在高渗透率并网场景下,逆变器与电网、逆变器集群间的交互作用易引发低频振荡、电压波动等稳定性问题,严重威胁电网安全运行。阻抗建模是量化分析并网稳定性的核心方法,通过建立逆变器输出阻抗与电网阻抗的数学关系,可基于奈奎斯特等阻抗比判据实现稳定性评估。扫频法则是验证阻抗模型准确性、获取实际系统动态特性的关键技术,为理论分析提供可靠数据支撑。
2026-01-13 09:12:58
310
原创 【并网光伏阵列】使用SimPowerSystems进行并网光伏阵列研究附Simulink仿真
在“双碳”目标推动下,光伏发电作为清洁可再生能源的核心利用形式,其并网运行的稳定性、效率与可靠性直接影响新能源电力系统的整体性能。并网光伏阵列的输出功率易受光照强度、环境温度等自然因素波动影响,且其直流转交流的电力变换过程涉及复杂的电力电子技术与控制策略,因此需通过精准的仿真建模与深入研究,优化系统设计、提升运行性能。
2026-01-13 09:11:40
365
原创 【贝叶斯变点推断】用于变点 Copula 模型的贝叶斯推断研究附Matlab代码
在多元时间序列分析领域,变量间依赖关系的动态刻画是解决金融风险评估、环境模式识别、医疗信号监测等实际问题的核心关键。Copula模型因能有效分离变量边缘分布与依赖结构,成为刻画非线性相关性的重要工具。然而,现实数据普遍存在非平稳性特征,传统静态Copula模型假设依赖结构恒定不变,难以捕捉诸如金融危机、政策调整、极端气候事件等引发的依赖关系突变现象。变点Copula模型通过引入变点机制,允许依赖结构在时间序列的特定位置发生突变,为动态依赖建模提供了有效框架。
2026-01-12 15:31:28
967
原创 【安全密钥】对基尔霍夫-洛-约翰逊噪声(KLJN)安全密钥交换协议的统计随机数生成器攻击附Matlab代码
基尔霍夫-洛-约翰逊噪声(Kirchhoff-law–Johnson-noise,KLJN)协议是一种基于经典物理定律的物理层安全密钥交换方案,其核心优势在于依托热力学第二定律实现信息论意义上的无条件安全性,为量子密钥分发(QKD)之外提供了低成本的安全密钥交换替代方案。其核心工作流程与安全保障机制如下:1. 比特状态生成与交换:通信双方Alice和Bob需预先约定一组电阻值{R₀, R₁},分别对应密钥比特0和1。
2026-01-12 15:30:41
778
原创 【UUV编队控制】基于SISO-PID与LQR的无人水下航行器(UUV)编队控制研究附Matlab代码
针对无人水下航行器(UUV)编队在复杂海洋环境中面临的强非线性、时变扰动及通信受限等协同控制难题,本文提出一种融合单输入单输出比例积分微分(SISO-PID)控制与线性二次型调节器(LQR)的混合控制策略。首先,构建考虑附加质量、黏性阻力等关键因素的UUV水动力动力学模型,为控制策略设计提供理论基础;其次,采用SISO-PID控制器实现各UUV姿态(横滚、俯仰、偏航)与速度(纵向、横向、垂向)的局部稳定控制,通过积分分离与微分先行结构优化抗饱和及抗干扰性能;
2026-01-12 15:29:47
587
原创 【UUV编队控制】UUV编队控制中PID控制器设计研究附Matlab代码
无人水下航行器(UUV)编队协同作业在海洋资源勘探、军事侦察、环境监测等领域具有不可替代的应用价值。针对复杂海洋环境下UUV编队控制存在的非线性、强耦合、时变干扰及通信延迟等问题,本文开展PID控制器设计研究。通过分析UUV编队控制的核心需求与传统PID控制器的局限性,提出融合模糊逻辑参数整定与预测补偿机制的改进PID控制策略。设计双输入三输出模糊PID控制器实现参数在线自适应调整,引入卡尔曼滤波预测补偿算法解决水下通信延迟问题。基于跟随领航者编队策略构建控制模型,通过Matlab仿真验证该策略的有效性。
2026-01-12 15:28:54
735
原创 【USV实时NMPC】无人水面艇实时非线性模型预测控制:轨迹跟踪与避障研究附Matlab代码
随着海洋开发、环境监测、搜索救援等水上任务需求的不断升级,无人水面艇(Unmanned Surface Vehicle, USV)凭借成本低、无人员伤亡风险、隐蔽性强等优势,成为水上自主作业的核心装备。轨迹跟踪与避障是USV实现自主航行的核心任务:轨迹跟踪要求USV在复杂海况下精确跟随预设路径,避障则需确保其在航行过程中有效规避静态障碍物(如礁石、浅滩)与动态障碍物(如其他船舶),且需严格遵循国际海上避碰规则(COLREGS)。
2026-01-12 15:28:05
893
原创 【UAV-碰撞避免】民用空域多无人机最优碰撞避免决策系统研究附Matlab代码
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。🍎 往期回顾关注个人主页:Matlab科研工作室🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。随着低空经济的蓬勃发展,无人机技术在物流配送、农业植保、电力巡检、应急救援等民用领域的应用日益广泛。据行业统计,我国民用无人机保有量已突破500万架,低空经济规模达1.5万亿元,多无人机协同作业模式凭借效率优势成为主流发展趋势。然而,民用空域环境复杂多样,包含建筑物、高压线等静态障碍
2026-01-12 15:27:05
777
原创 【Trans论文复现】基于Agent的电力市场深度决策梯度(深度强化学习)算法建模研究附Python代码
随着电力系统市场化改革的持续深化,市场竞争日趋白热化,传统电力市场决策方法(如线性规划、博弈论等)在应对高维状态空间、连续动作空间以及动态不确定的市场环境时,逐渐显现出决策效率低、适应性差等局限性。电力市场参与者(发电企业、售电公司、虚拟电厂等)需在实时电价波动、负荷变化、竞争对手策略调整等多重约束下,制定最优报价、发电计划或交易策略,以实现利润最大化等核心目标,这一过程亟需具备自学习与自适应能力的智能决策方法支撑。
2026-01-12 15:24:54
877
原创 【SVR-SVDD】基于支持向量-SVDD 进行异常检测研究附Matlab代码
在大数据时代,异常数据的精准识别已成为金融风控、工业故障预警、网络安全监测等关键领域的核心需求。异常数据通常表现为偏离正常数据分布的小众样本,其隐蔽性强、形态多样的特点给检测工作带来了诸多挑战。传统异常检测方法如基于统计的阈值法、聚类分析法等,在处理高维、非线性数据时,往往存在泛化能力弱、检测精度不足的问题。支持向量机(SVM)相关衍生算法凭借结构风险最小化原则,在小样本、非线性问题中展现出独特优势。
2026-01-12 15:24:05
658
原创 【STFT-CNN-BiGRU的故障诊断】基于短时傅里叶变换(STFT)结合卷积神经网络(CNN)与双向门控循环单元(BiGRU)的故障诊断研究附Matlab代码
随着工业自动化水平的不断提升,机械设备的复杂度日益增加,其运行状态的稳定性直接关系到生产安全、效率及经济效益。在各类工业设备中,滚动轴承、电机等核心部件的故障极易引发连锁反应,导致设备停机甚至安全事故。因此,实现对设备故障的早期、精准诊断,是保障工业系统可靠运行的关键支撑。传统故障诊断方法多依赖人工经验或传统信号处理技术,如傅里叶变换(FT)结合支持向量机(SVM)等机器学习算法。
2026-01-12 15:23:08
1006
原创 【SG滤波】三阶滤波、五阶滤波、七阶滤波附Matlab代码
Savitzky-Golay(SG)滤波,又称最小二乘平滑滤波器,是信号处理领域中经典的数字滤波方法。其核心思想是在固定大小的滑动窗口内,通过多项式最小二乘拟合逼近原始信号,并用拟合多项式的窗口中心点值作为滤波结果,实现噪声平滑与信号特征保留的平衡。与传统移动平均滤波相比,SG滤波的显著优势在于平滑噪声的同时,能更好地保留信号的边缘、峰值等关键特征,因此广泛应用于光谱分析、生物信号处理、高光谱图像降噪等领域。窗口长度(通常为2m+1,m为窗口半宽,需为正奇数)和多项式阶数。
2026-01-12 15:03:50
854
2023Q1中国房地产金融分析:小阳春行情及其可持续性的探讨
2025-03-27
磨料射流破岩应力分析:磨料粒子和超临界CO2气体应力的力学计算
2025-03-18
【医美行业运营】医美机构社群裂变营销策略:构建高效用户增长与互动体系
2025-04-17
【医美整形行业】基于小红书数据的内容洞察与用户画像分析:搜索趋势及热门项目解析
2025-04-17
2022年中国房地产精装修市场热水器与净水器配套规模及品牌竞争格局分析
2025-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅