Matlab机器学习之心
码龄4年
关注
提问 私信
  • 博客:853,665
    853,665
    总访问量
  • 1,100
    原创
  • 1,068
    排名
  • 9,044
    粉丝
  • 0
    铁粉

个人简介:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机、无线传感器网络、车间调度、生产调度等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2020-10-08
博客简介:

j_jinger的博客

查看详细资料
  • 原力等级
    当前等级
    5
    当前总分
    981
    当月
    221
个人成就
  • 获得19,310次点赞
  • 内容获得0次评论
  • 获得19,916次收藏
创作历程
  • 204篇
    2025年
  • 896篇
    2024年
成就勋章
兴趣领域 设置
  • 大数据
    数据仓库
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【故障诊断】基于狮群优化算法LSO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其运行状态直接关系到设备的整体性能和安全可靠性。准确、高效的轴承故障诊断对于预防设备故障、避免重大经济损失至关重要。本文提出了一种基于狮群优化算法(LionSwarmOptimization,LSO)优化双向时间卷积神经网络(BidirectionalTemporalConvolutionalNetwork,BiTCN)的轴承故障诊断方法。
原创
发布博客 7 小时前 ·
367 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

【故障诊断】基于蛇群优化算法SO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其运行状态的准确诊断对于保障设备安全稳定运行至关重要。传统的轴承故障诊断方法依赖于人工经验,效率低下且准确性有限。近年来,深度学习技术,特别是卷积神经网络(CNN),在故障诊断领域展现出巨大的潜力。本文提出一种基于蛇群优化算法(SO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列处理能力,结合SO算法对BiTCN网络参数进行优化,提高了模型的泛化能力和诊断精度。
原创
发布博客 7 小时前 ·
426 阅读 ·
5 点赞 ·
0 评论 ·
16 收藏

【故障诊断】基于沙猫群优化算法SCSO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其运行状态的准确诊断对于保障设备安全稳定运行至关重要。传统的轴承故障诊断方法依赖于专家经验,效率低且准确性有限。近年来,深度学习技术,特别是卷积神经网络(CNN),在轴承故障诊断领域展现出巨大的潜力。本文提出了一种基于沙猫群优化算法(SCSO)优化的双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,并结合SCSO算法优化BiTCN网络参数,以提高故障诊断的准确率和鲁棒性。
原创
发布博客 7 小时前 ·
225 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

【故障诊断】基于三角测量拓扑聚合优化器TTAO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的核心部件,其运行状态直接影响设备的整体性能和安全。准确有效的轴承故障诊断对于预防设备故障、降低维护成本至关重要。本文提出一种基于三角测量拓扑聚合优化器(TTAO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用BiTCN强大的时间序列特征提取能力对轴承振动信号进行特征学习,然后采用TTAO算法优化BiTCN网络结构参数,以提高模型的诊断精度和泛化能力。
原创
发布博客 7 小时前 ·
486 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

【故障诊断】基于人工蜂群优化算法ABC优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械中的关键部件,其运行状态的准确诊断对保障设备安全稳定运行至关重要。本文提出了一种基于人工蜂群算法(ArtificialBeeColony,ABC)优化双向时间卷积神经网络(BidirectionalTimeConvolutionalNetwork,BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,结合ABC算法的全局寻优能力,对BiTCN网络参数进行优化,从而提高轴承故障诊断的准确性和鲁棒性。
原创
发布博客 7 小时前 ·
650 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

【故障诊断】基于麻雀搜索优化算法SSA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其运行状态直接影响设备的整体性能和安全。准确、高效地进行轴承故障诊断对于预防设备故障、减少经济损失至关重要。本文提出了一种基于麻雀搜索算法(SSA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用SSA算法优化BiTCN的网络结构参数,提升模型的特征提取能力和分类精度。实验结果表明,该方法在轴承故障诊断任务中取得了优于传统方法的性能,有效提高了诊断准确率和效率。1.引言随着工业自动化程度的不断提高,对设备运行状态的实时监控和故障诊断的
原创
发布博客 7 小时前 ·
240 阅读 ·
13 点赞 ·
0 评论 ·
4 收藏

【故障诊断】基于黏菌优化算法SMA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其运行状态的准确诊断对保障设备安全稳定运行至关重要。本文提出一种基于黏菌优化算法(SMA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,结合SMA算法对BiTCN网络参数进行优化,以提高故障诊断的准确性和鲁棒性。实验结果表明,该方法在轴承故障诊断中取得了显著的效果,优于传统的BP神经网络和未经优化的BiTCN模型。关键词:轴承故障诊断;双向时间卷积神经网络;黏菌优化算法;特征提取;故障分类1引言。
原创
发布博客 7 小时前 ·
575 阅读 ·
6 点赞 ·
0 评论 ·
12 收藏

【故障诊断】基于能量谷优化算法EVO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的核心部件,其可靠性直接影响着整个系统的运行状态。准确、高效的轴承故障诊断对于保障设备安全和避免重大经济损失至关重要。本文提出一种基于能量谷优化算法(EnergyValleyOptimization,EVO)优化双向时间卷积神经网络(BidirectionalTimeConvolutionalNetwork,BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,并结合EVO算法对BiTCN模型参数进行优化,以提高诊断精度和效率。
原创
发布博客 7 小时前 ·
649 阅读 ·
14 点赞 ·
0 评论 ·
6 收藏

【故障诊断】基于龙格库塔优化算法RUN优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的核心部件,其运行状态的准确诊断对设备的安全稳定运行至关重要。本文提出一种基于龙格库塔优化算法(RUN)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,并结合RUN算法优化BiTCN网络参数,以提高模型的预测精度和泛化能力。实验结果表明,该方法在轴承故障诊断中取得了优于传统方法的性能,有效提升了故障诊断的准确性和可靠性。关键词:轴承故障诊断;双向时间卷积神经网络(BiTCN);龙格库塔优化算法(RUN);
原创
发布博客 7 小时前 ·
617 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

【故障诊断】基于凌日优化算法TSOA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其运行状态的准确诊断对保障设备安全稳定运行至关重要。传统轴承故障诊断方法依赖于人工经验,效率低且准确性难以保证。近年来,深度学习技术在故障诊断领域取得了显著进展,但模型参数优化和泛化能力仍是制约其应用的关键问题。本文提出了一种基于凌日优化算法(TSOA)优化双向时间卷积神经网络(BiTCN)的轴承数据故障诊断方法。该方法利用TSOA算法对BiTCN网络的参数进行优化,提升了网络的学习效率和泛化能力,有效提高了轴承故障诊断的准确率。
原创
发布博客 7 小时前 ·
249 阅读 ·
17 点赞 ·
0 评论 ·
14 收藏

【故障诊断】基于粒子群优化算法PSO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为机械设备中的关键部件,其运行状态直接影响设备的整体性能和可靠性。准确及时地进行轴承故障诊断对于预防设备故障、减少经济损失至关重要。本文提出了一种基于粒子群优化算法(PSO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列数据处理能力,结合PSO算法优化BiTCN网络结构参数,从而提高故障诊断的精度和效率。通过在公开数据集上的实验验证,结果表明该方法相比传统的故障诊断方法具有显著的优势。关键词:轴承故障诊断;双向时间卷积神经网络;粒子群优化算法。
原创
发布博客 8 小时前 ·
413 阅读 ·
11 点赞 ·
0 评论 ·
9 收藏

【故障诊断】基于开普勒优化算法KOA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其故障诊断对保障设备安全运行至关重要。本文提出一种基于开普勒优化算法(KOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN的双向结构有效提取轴承振动信号的时间特征,并结合KOA算法优化BiTCN的超参数,以提高模型的诊断精度和泛化能力。实验结果表明,该方法在多个公开数据集上的诊断准确率显著优于传统的机器学习算法和未优化的BiTCN模型,验证了其有效性和优越性。关键词:轴承故障诊断;双向时间卷积神经网络;
原创
发布博客 8 小时前 ·
349 阅读 ·
7 点赞 ·
0 评论 ·
9 收藏

【故障诊断】基于金枪鱼优化算法TSO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的关键部件,其可靠性直接影响着整个系统的运行状态。准确、高效的轴承故障诊断对于保障设备安全、减少经济损失至关重要。本文提出一种基于金枪鱼优化算法(TunaSwarmOptimization,TSO)优化双向时间卷积神经网络(BidirectionalTimeConvolutionalNeuralNetwork,BiTCN)的轴承故障诊断方法。
原创
发布博客 10 小时前 ·
300 阅读 ·
13 点赞 ·
0 评论 ·
9 收藏

【故障诊断】基于鲸鱼优化算法WOA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要:轴承作为旋转机械的核心部件,其运行状态直接影响着整个系统的稳定性和可靠性。准确、高效的轴承故障诊断对于预防设备故障、减少经济损失至关重要。本文提出了一种基于鲸鱼优化算法WOA(WhaleOptimizationAlgorithm)优化双向时间卷积神经网络BiTCN(BidirectionalTimeConvolutionalNeuralNetwork)的轴承故障诊断方法。
原创
发布博客 10 小时前 ·
249 阅读 ·
15 点赞 ·
0 评论 ·
7 收藏

【故障诊断】基于金豺优化算法GJO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要: 轴承作为机械设备的核心部件,其运行状态直接影响着设备的整体性能和使用寿命。准确、高效的轴承故障诊断对于保障设备安全、减少经济损失至关重要。本文提出了一种基于金豺优化算法(GJO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用BiTCN强大的时间序列特征提取能力对轴承振动信号进行特征学习,然后采用GJO算法对BiTCN模型的参数进行优化,以提高模型的泛化能力和诊断精度。
原创
发布博客 前天 16:54 ·
658 阅读 ·
17 点赞 ·
0 评论 ·
15 收藏

【故障诊断】基于金枪鱼优化算法TSO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要: 轴承作为机械设备中的关键部件,其运行状态直接影响设备的整体性能和使用寿命。准确、高效的轴承故障诊断对保障设备安全稳定运行至关重要。本文提出一种基于金枪鱼优化算法(Tuna Swarm Optimization, TSO)优化双向时间卷积神经网络(Bidirectional Temporal Convolutional Network, BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,结合TSO算法对BiTCN网络参数进行优化,提升模型的诊断精度和泛化能力。
原创
发布博客 前天 16:52 ·
605 阅读 ·
12 点赞 ·
0 评论 ·
20 收藏

【故障诊断】基于减法平均优化算法SABO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要: 轴承作为旋转机械的关键部件,其运行状态直接关系到设备的可靠性和安全性。准确、高效地进行轴承故障诊断对于保障工业生产至关重要。本文提出了一种基于减法平均优化算法(SABO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,结合SABO算法对BiTCN网络参数进行优化,提高了模型的诊断精度和泛化能力。通过在公开数据集上的实验验证,结果表明,该方法在轴承故障诊断任务中取得了显著的性能提升,优于传统的故障诊断方法。关键词: 轴承故障诊断;
原创
发布博客 前天 16:50 ·
488 阅读 ·
11 点赞 ·
0 评论 ·
7 收藏

【故障诊断】基于混沌博弈优化算法CGO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要: 轴承作为旋转机械的关键部件,其运行状态的准确诊断对于保障设备安全稳定运行至关重要。本文提出一种基于混沌博弈优化算法(CGO)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法首先利用双向时间卷积神经网络提取轴承振动信号中的时域和频域特征,然后采用混沌博弈优化算法优化BiTCN的网络参数,提高模型的泛化能力和诊断精度。通过在公开数据集上的实验验证,结果表明该方法在轴承故障诊断任务中具有较高的准确率和鲁棒性,优于传统方法和一些已有的深度学习模型。关键词: 轴承故障诊断;
原创
发布博客 前天 16:48 ·
555 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

【故障诊断】基于灰狼优化算法GWO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要: 轴承作为旋转机械的关键部件,其运行状态的准确诊断对保障设备安全稳定运行至关重要。传统的轴承故障诊断方法往往依赖于人工经验,效率低且准确性有限。近年来,深度学习技术在故障诊断领域展现出巨大的潜力。本文提出一种基于灰狼优化算法(Grey Wolf Optimizer, GWO)优化双向时间卷积神经网络(Bidirectional Temporal Convolutional Network, BiTCN)的轴承故障诊断方法。
原创
发布博客 前天 16:47 ·
608 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

【故障诊断】基于蝗虫优化算法GOA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

摘要: 轴承作为旋转机械的关键部件,其运行状态的准确诊断对于保障设备安全稳定运行至关重要。近年来,深度学习技术在轴承故障诊断领域取得了显著进展,但仍面临着模型参数难以优化、诊断精度有待提高等挑战。本文提出一种基于蝗虫优化算法(Grasshopper Optimization Algorithm, GOA)优化双向时间卷积神经网络(Bidirectional Temporal Convolutional Network, BiTCN)的轴承故障诊断方法。
原创
发布博客 前天 16:45 ·
652 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏
加载更多