- 博客(5884)
- 收藏
- 关注
原创 【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究附Matlab代码
在“双碳”战略与新型电力系统建设背景下,高比例可再生能源(风光等)大规模并网引发的系统灵活性缺口问题日益突出。可再生能源的间歇性、波动性导致电网功率失衡风险剧增,而新建储能系统虽能平抑波动,却面临初始投资成本高昂的瓶颈;同时,电价波动、负荷变化等多重不确定性,进一步加剧了虚拟电厂(VPP)运行调度的复杂度。现有虚拟电厂调度研究存在三大核心痛点:一是储能系统容量衰减刻画精度不足,传统模型忽略放电深度(DOD)与荷电状态(SOC)的耦合影响,导致调度方案与实际运行偏差较大;
2026-01-16 15:03:21
175
原创 【顶级SCI复现】高比例可再生能源并网如何平衡灵活性与储能成本?虚拟电厂多时间尺度调度及衰减建模附Matlab代码
在“双碳”目标驱动下,全球能源转型进入深水区,风电、光伏等可再生能源规模化并网成为必然趋势。然而,可再生能源“看天吃饭”的间歇性、波动性特征,导致电力系统灵活性缺口日益凸显,电网运行面临“过山车”式功率波动风险。新建储能系统虽能有效平抑波动、弥补灵活性缺口,但高昂的初始投资成本与后续运维损耗,使系统经济性陷入困境;加之电价、负荷的双重不确定性,高比例可再生能源并网下的电力系统运行犹如“蒙眼走钢丝”,亟需低成本、高可靠性的协同调度方案。
2026-01-16 15:02:29
169
原创 【顶级SCI复现】【日前调度和日内调度两个时间尺度】虚拟电厂多时间尺度调度优化研究附Matlab代码
在“双碳”战略与新型电力系统建设背景下,高比例可再生能源(风电、光伏)大规模并网成为能源转型的核心路径。然而,风光能源“看天吃饭”的间歇性、波动性特征,叠加电价波动、负荷不确定性等因素,导致电力系统灵活性缺口持续扩大,给电网安全稳定运行带来严峻挑战。虚拟电厂(VPP)作为分布式资源聚合管理的核心载体,可整合光伏、储能、可控负荷、微型燃气轮机等多元资源,通过多时间尺度调度策略平抑功率波动、优化资源配置,成为破解上述难题的关键技术路径。
2026-01-16 15:01:36
156
原创 【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略附Matlab代码
随着电力市场改革的持续深化,售电商作为电力供应链的核心枢纽,面临着多元用户需求响应与多级市场价格波动的双重挑战。为实现售电商利润最大化与用户效用最优的双赢目标,本文提出一种基于主从博弈理论的售电商多元零售套餐设计与多级市场购电协同优化策略。构建售电商为主方、多元用户为从方的双层优化模型,上层模型以考虑风险约束的售电商综合效益最大化为目标,优化多元零售套餐参数与多级市场购电分配方案;下层模型以用户综合用电满意度最大化为目标,实现零售套餐选择与用电行为调整。
2026-01-16 15:00:50
345
原创 【顶级EI复现】基于断线解环思想的配电网辐射状拓扑约束建模方法附Matlab代码
为解决传统配电网辐射状拓扑约束建模中“可靠性不足、计算复杂度高”的核心问题,本文复现了一种基于断线解环思想的拓扑约束建模方法。该方法先剖析传统生成树约束(ST)的局限性,证明其仅为辐射状拓扑的必要非充分条件,进而提出“环网断线+连通性保障”的约束体系,严格证明其为辐射状拓扑成立的充分必要条件。基于此构建混合整数凸优化模型,应用于配电网扩建规划与故障恢复场景,通过IEEE 33节点、123节点系统验证。
2026-01-16 14:59:49
106
原创 【顶级EI复现】【最新EI论文】低温环境下考虑电池寿命的微电网优化调度附Matlab代码
为解决低温环境下微电网中电池性能劣化、寿命损耗加速导致的运行经济性与可靠性下降问题,本文提出一种融合低温设备特性与电池寿命损耗量化的微电网多目标优化调度方法。首先,分析低温对光伏、风电及锂电池的性能影响机制,建立温度修正的设备特性模型,精准刻画低温下可再生能源出力衰减、电池充放电容量与效率下降规律。其次,采用“循环损耗主导+日历损耗修正”的耦合建模思路,结合雨流计数法与低温加速老化系数,构建电池寿命损耗量化模型,实现充放电参数与低温协同作用下寿命损耗的精准表征。
2026-01-16 14:58:57
388
原创 【调峰】储能辅助电力系统调峰的容量需求研究附Matlab代码
在“双碳”目标引领下,风电、光伏等可再生能源大规模高比例并网,电力系统的随机性、波动性与反调峰特性显著增强,传统调峰手段面临严峻挑战。煤电机组经灵活性改造后最小出力仍难以适配深度调峰需求,水电、气电等调节性电源受资源禀赋或成本限制布局有限,导致系统峰谷差持续扩大,弃风弃光现象时有发生。在此背景下,储能凭借快速响应、灵活调节的核心优势,成为填补调峰缺口、保障电力系统安全稳定运行的关键支撑。
2026-01-16 14:58:06
410
原创 【电压风险评估】基于720个样本与360个样本的Copula及蒙特卡罗推断结果比较研究附Matlab代码
随着电力系统向高比例新能源、高电力电子化方向转型,电压稳定性问题愈发突出,电压风险评估成为保障系统安全稳定运行的核心环节。样本量作为风险评估的基础输入,其规模合理性直接影响推断结果的准确性、可靠性与实用性——样本量过小可能导致统计信息不足,无法反映电压波动的真实规律;样本量过大则会增加数据采集、处理成本及计算复杂度,降低评估效率。Copula函数凭借其对变量间非线性相关关系的精准刻画能力,在多维度电压风险因子耦合分析中得到广泛应用;
2026-01-16 14:55:39
113
原创 【电力系统潮流】高斯-塞德尔、牛顿-拉夫逊和P-Q解耦方法【IEEE30节点】附Matlab代码
潮流计算是电力系统分析的核心基础,其核心目标是求解系统中各节点的电压幅值与相角、各支路的功率流向及损耗,为电力系统规划、运行调度、稳定性分析提供数据支撑。IEEE30节点系统是电力系统分析中常用的标准测试系统,包含30个节点、41条支路、6台发电机和21个负荷,节点类型涵盖PQ节点(有功功率P、无功功率Q给定)、PV节点(有功功率P、电压幅值V给定)和平衡节点(电压幅值V、相角δ给定,承担系统功率平衡调节),适用于验证各类潮流计算方法的有效性与精度。
2026-01-16 14:54:44
184
原创 【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究附Matlab代码
在“双碳”目标引领与新能源汽车产业政策驱动下,电动汽车(Electric Vehicle, EV)保有量呈指数级增长。据国际能源署(IEA)预测,2030年全球EV渗透率将突破30%,中国EV销量占比将超50%。EV的规模化应用在节能减排、替代传统燃油汽车方面成效显著,但也给电力系统运行带来新的挑战。
2026-01-16 14:53:20
505
原创 【低压配电网】【对单相接地低压电网监测方案性能】在径向低压测试馈线上使用WLS状态估计器的性能,由于测量误差的随机性质,分析以蒙特卡洛方式进行附Matlab代码
在低压配电网运行过程中,单相接地故障是高发故障类型,精准的状态监测与估计是保障电网安全稳定运行的关键。径向结构是低压配电网的典型拓扑形式,基于该拓扑的测试馈线是验证状态估计器性能的常用载体。加权最小二乘(WLS)状态估计器因具备良好的收敛性和估计精度,被广泛应用于配电网状态监测领域。由于配电网实际运行中的测量数据不可避免地存在随机误差(如传感器测量噪声、数据传输误差等),这类随机误差会直接影响WLS状态估计器的估计结果准确性。
2026-01-15 20:29:59
278
原创 【低PAPR、低延迟、高谱效率】一种新型调制方案,结合了滤波器组多载波(FBMC)偏移正交幅度调制(OQAM)和单载波频分多址(SC-FDMA)的优势研究附Matlab代码
在5G及后5G无线通信系统中,增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)和海量机器类通信(mMTC)等多元应用场景对调制技术提出了严苛要求,低峰均功率比(PAPR)、低传输延迟、高频谱效率成为核心性能指标。当前主流调制技术存在难以兼顾多维度性能的短板:正交频分复用(OFDM)虽易与多输入多输出(MIMO)技术融合,但带外辐射高、对同步误差敏感且依赖循环前缀(CP),导致频谱效率受限;
2026-01-15 20:29:10
473
原创 【单悬臂梁】基于梯度缺陷ANCF梁单元的单悬臂梁在重力作用下的弯曲MATLAB仿真,采用显式时间步进算法研究附Matlab代码
单悬臂梁作为工程结构中常见的基础构件,其在重力等静载荷作用下的弯曲变形特性是结构力学分析的重要基础。绝对节点坐标公式(Absolute Nodal Coordinate Formulation, ANCF)凭借其无需更新旋转矩阵、可精确描述大变形大转动问题的优势,在柔性体动力学仿真中得到广泛应用。然而,传统ANCF梁单元存在“剪切锁死”和“薄膜锁死”等数值缺陷,影响小变形或低载荷下仿真结果的精度。
2026-01-15 20:28:16
631
原创 【单相STATCOM】单相STATCOM在单相系统中补偿无功功率,并减轻谐波附Simulink仿真
【单相STATCOM】作为基于电压源型变流器(VSC)的有源电力电子装置,是改善单相电力系统电能质量的核心设备,其核心功能在于精准补偿系统无功功率、有效减轻谐波污染,为铁路电气化、工业单相负载及居民用电等场景提供稳定可靠的供电保障。
2026-01-15 20:27:07
723
原创 【单仓库多旅行商问题SDMTSP】基于BSLO吸血水蛭优化器求解单仓库多旅行商问题,可以更改数据集和起点附Matlab代码
单仓库多旅行商问题(Single-Depot Multiple Traveling Salesman Problem,SDMTSP)是经典旅行商问题(TSP)的扩展形式,广泛应用于物流配送、路径规划、快递调度等实际场景。其核心需求为:多个旅行商从同一个仓库(起点)出发,遍历指定的所有客户点(需求点),最终返回仓库,要求在满足约束条件(如每个客户点仅被访问一次、旅行商路径不重叠等)的前提下,实现总行程最短、总耗时最少等优化目标。
2026-01-15 20:26:20
625
原创 【带时间窗的车辆路径问题VRPTW】基于灰狼优化算法GWO求解带时间窗的车辆路径问题VRPTW研究附Matlab代码
带时间窗的车辆路径问题(VRPTW)作为经典车辆路径问题(VRP)的重要扩展,是物流配送优化领域的核心问题之一,其核心目标是在满足车辆容量、客户时间窗等多重约束条件下,规划多车辆的配送路径以实现总成本最小化。由于VRPTW属于NP-hard问题,随着客户规模扩大,传统精确算法难以在有效时间内求得最优解。灰狼优化算法(GWO)作为一种模拟灰狼群体狩猎行为的群智能优化算法,具有参数少、全局搜索能力强、探索与开发平衡性能优异等特点。
2026-01-15 20:25:17
417
原创 【带宽感知自适应模式分解】铁路轴承故障诊断的带宽感知自适应模式分解附Matlab代码
铁路轴承作为高速列车走行部的核心关键部件,其运行状态直接关乎行车安全与运输效率。在实际服役过程中,铁路轴承长期面临载荷多变、强电磁干扰、环境恶劣等复杂工况,易引发外圈磨损、内圈裂纹、滚动体损伤等多种故障类型。故障信号往往表现出强烈的非平稳性与非线性特征,且易被背景噪声和其他部件振动信号湮没,给故障特征的精准提取带来严峻挑战。
2026-01-15 20:24:25
443
原创 【大规模多仓库多旅行商问题LS-MDMTSP】基于改进型雪雁算法(ISGA)的大规模多仓库多旅行商问题(LS-MDMTSP)研究附Matlab代码
大规模多仓库多旅行商问题(Large-Scale Multi-Depot Multi-Traveling Salesman Problem, LS-MDMTSP)作为经典组合优化问题的延伸,广泛应用于物流配送、无人机巡检、供应链管理等实际场景,其核心目标是在多仓库协同、大规模客户节点覆盖的约束下实现路径总代价最小化。由于该问题属于NP难问题,传统优化算法在求解时面临收敛速度慢、易陷入局部最优等挑战。
2026-01-15 20:23:33
447
原创 【大规模单仓库多旅行商问题LS-SDMTSP】基于鲸鱼迁徙算法(WMA)的大规模单仓库多旅行商问题(LS-SDMTSP)求解研究附Matlab代码
大规模单仓库多旅行商问题(LS-SDMTSP)作为组合优化领域的经典NP-hard难题,广泛应用于物流配送、无人机集群作业、城市巡检等实际场景,其核心需求是在单一起始仓库约束下,通过多旅行商协同完成大规模客户点的访问任务,实现总行驶里程最小化与调度效率最大化。传统精确算法受限于指数级增长的计算复杂度,难以处理大规模问题;主流启发式算法则普遍存在易陷入局部最优、收敛缓慢等缺陷。为此,本文提出一种基于鲸鱼迁徙算法(WMA)的LS-SDMTSP求解方法。
2026-01-15 20:22:40
430
原创 【创新首发】NRBO-SVM时序预测研究(直接替换运行)附Matlab代码
时序预测作为数据分析领域的核心任务之一,广泛应用于经济金融、能源电力、环境监测等多个关键领域。准确的时序预测能够为决策制定提供科学依据,降低不确定性带来的风险。支持向量机(SVM)作为一种经典的机器学习算法,凭借其在小样本、高维数据场景下的优异泛化性能,被广泛应用于时序预测任务中。然而,传统SVM的核函数参数与惩罚因子难以通过人工精准设定,参数选择的合理性直接影响预测模型的性能上限。为解决这一问题,诸多智能优化算法被用于SVM的参数优化,如粒子群优化(PSO)、遗传算法(GA)等。
2026-01-15 20:21:42
616
原创 【创新首发】ISSA-RBF时序预测:融合柯西变异和反向学习的改进麻雀搜索算法优化RBF时序预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在时序预测中易陷入局部最优、收敛速度慢,且标准麻雀搜索算法(SSA)存在后期搜索精度不足等问题,提出一种融合柯西变异和反向学习的改进麻雀搜索算法(ISSA)优化RBF神经网络的时序预测模型(ISSA-RBF)。该模型首先采用Sin混沌映射初始化种群,提升初始解的遍历性与均匀性;其次在发现者位置更新机制中引入上一代全局最优解与自适应权重,平衡全局探索与局部开发能力并加快收敛速度;最后融合柯西变异算子与反向学习策略对最优解进行扰动优化,增强算法跳出局部最优的能力。
2026-01-14 15:06:54
719
原创 【创新首发】FIVM-RBF回归预测研究:基于特征重要性加权与径向基神经网络的非线性预测模型附Matlab代码
在工业生产监控、金融市场分析、环境质量预测等众多领域,回归预测模型是实现风险预警、决策优化的核心技术支撑。然而,实际应用中的预测任务往往面临高维、非线性、多因素耦合的复杂数据场景,传统回归模型存在明显局限性:多元线性回归、时间序列ARMA等线性模型难以捕捉变量间的复杂交互关系;常规神经网络(如BP神经网络)虽具备一定非线性拟合能力,但未考虑输入特征的冗余性与差异化贡献度,易受噪声特征干扰,导致模型泛化能力不足、预测精度受限。
2026-01-14 15:05:23
425
原创 【创新首发】【TTHHO-SVM时序预测】改进的瞬态三角哈里斯鹰优化算法(TTHHO)优化SVM时序预测研究附Matlab代码
时序预测在金融市场分析、气象预警、工业过程控制等多个关键领域具有不可替代的决策支撑价值,准确捕捉时序数据中的非线性特征与动态变化规律是提升预测性能的核心目标。支持向量机(SVM)作为经典的监督学习模型,在小样本、高维时序数据预测任务中展现出独特优势,但其一性能高度依赖惩罚因子(C)、核函数参数(γ)等关键参数的合理配置,传统参数优化方法易陷入局部最优或存在效率低下的问题。
2026-01-14 15:04:21
485
原创 【创新首发】【NRBO-RBF】基于牛顿-拉夫逊优化算法的RBF神经网络回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在复杂非线性回归预测任务中,依赖梯度下降法优化参数时易陷入局部最优、收敛速度慢且泛化能力有限的缺陷,本文提出一种基于牛顿-拉夫逊优化算法(NRBO)改进的RBF神经网络回归预测模型(NRBO-RBF)。该模型创新性地将NRBO算法引入RBF神经网络的参数优化过程,借助NRBO算法的牛顿-拉夫逊搜索规则(NRSR)利用二阶导数信息提升参数搜索精度,通过陷阱避免算子(TAO)增强全局寻优能力,实现对RBF网络隐层中心、径向基宽度及输出权重的动态优化。
2026-01-14 15:03:25
742
原创 【创新首发】【MSWOA-RBF时序预测】基于混合策略改进的鲸鱼优化算法优化RBF时序预测研究附Matlab代码
时间序列预测作为数据挖掘与智能计算领域的核心研究方向之一,在经济金融、环境监测、工业生产、气象预报等诸多领域具有广泛的应用价值。其核心目标是通过对历史时序数据的规律挖掘,实现对未来数据趋势的精准预判。随着实际应用场景的复杂化,时序数据往往呈现出非线性、非平稳性、高波动性等特征,传统的线性预测模型(如ARIMA模型)已难以满足精准预测的需求。径向基函数(RBF)神经网络作为一种经典的前馈型神经网络,凭借其结构简单、学习速度快、局部逼近能力强等优势,在非线性时间序列预测中得到了广泛应用。
2026-01-14 15:02:17
844
原创 【创新首发】【LEA-RBF回归预测】基于狮群优化算法的径向基神经网络创新研究附Matlab代码
在数据驱动的智能决策时代,回归预测作为捕捉复杂变量间映射关系的核心技术,已广泛应用于电力负荷调度、工业过程控制、资源需求预测等关键领域。径向基函数神经网络(RBF)凭借其独特的局部逼近特性、快速收敛能力以及强大的非线性映射能力,成为回归预测领域的优选模型之一。其通过输入层、隐层(径向基层)与输出层的三层架构,实现输入空间到隐层空间的非线性映射及输出层的线性组合输出,能够有效逼近任意复杂非线性函数,适用于处理难以用解析方法建模的复杂系统。
2026-01-14 15:01:25
710
原创 【创新首发】【JaDE-SVM时序预测】自适应权重差分进化算法(JaDE)优化SVM时序预测研究附Matlab代码
时序预测在金融市场分析、气象预报、交通流量管控、工业过程监控等关键领域具有不可替代的应用价值,其核心目标是通过挖掘历史时序数据中的内在规律,实现对未来趋势的精准预判。支持向量机(SVM)凭借其坚实的统计学习理论基础、优异的非线性映射能力及结构风险最小化特性,在时序预测领域展现出独特优势。然而,SVM的预测性能高度依赖于惩罚参数C与核参数γ的合理配置,传统参数优化方法(如网格搜索、交叉验证)存在效率低下、易陷入局部最优等缺陷,严重制约了其在复杂时序数据场景中的应用效果。
2026-01-14 14:54:55
547
原创 【创新首发】【ISSA-SVM时序预测】融合柯西变异和反向学习的改进麻雀搜索算法优化SVM时序预测研究附Matlab代码
针对传统支持向量机(SVM)在时序预测中核函数参数与惩罚因子难以精准匹配、易导致预测精度不足,以及原始麻雀搜索算法(SSA)存在种群多样性差、早熟收敛等缺陷,提出一种融合柯西变异和反向学习的改进麻雀搜索算法(ISSA),并将其用于优化SVM时序预测模型。该算法首先通过Sin混沌映射初始化种群,提升初始解分布均匀性;在发现者位置更新阶段引入上一代全局最优解与自适应权重,平衡全局探索与局部开采能力;最后在最优解迭代过程中融合柯西变异与反向学习策略,增强算法跳出局部最优的能力。
2026-01-14 14:53:08
762
原创 【创新首发】【ISSA-RBF回归预测】融合柯西变异和反向学习的改进麻雀搜索算法优化RBF回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在回归预测任务中易陷入局部最优、收敛速度慢,且标准麻雀搜索算法(SSA)全局寻优能力不足、后期搜索效率衰减的问题,提出一种融合柯西变异和反向学习的改进麻雀搜索算法(ISSA)优化RBF回归预测模型(ISSA-RBF)。首先,采用Sin混沌映射初始化种群,提升初始解的遍历性与均匀性,为全局寻优奠定基础;其次,在发现者位置更新策略中引入上一代全局最优解与自适应权重,平衡全局探索与局部挖掘能力,加快收敛速度;
2026-01-14 14:51:55
655
原创 【创新首发】【IPSO-SVM时序预测】非线性动态自适应惯性权重的改进粒子群优化算法优化SVM时序预测研究附Matlab代码
时间序列预测作为数据分析与智能决策的核心技术之一,广泛应用于金融市场走势预判、电力负荷调度、气象灾害预警、农业土壤墒情监测等多个关键领域。精准的时序预测能够为决策制定提供科学依据,显著提升资源配置效率与风险防控能力。支持向量机(SVM)凭借其基于结构风险最小化原则的独特优势,在处理非线性、小样本时序数据时展现出良好的泛化性能与鲁棒性,成为时序预测领域的主流模型之一。
2026-01-14 14:50:57
612
原创 【创新首发】【IPOA-SVM时序预测】基于改进鹈鹕优化算法(IPOA)的支持向量机时序预测研究附Matlab代码
为解决传统支持向量机(SVM)在时序预测中参数选择依赖经验、易陷入局部最优的缺陷,提升模型对非线性、高噪声时序数据的预测性能,本文提出一种基于改进鹈鹕优化算法(IPOA)优化SVM的时序预测模型(IPOA-SVM)。该模型结合IPOA的全局搜索能力与自适应优化机制,实现对SVM惩罚参数C和核函数参数γ的动态精准优化。
2026-01-13 09:20:10
341
原创 【创新首发】【HHO-RBF回归预测】基于哈里斯鹰优化算法的RBF神经网络回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在回归预测任务中,依赖梯度下降法优化参数时易陷入局部最优、收敛速度慢且预测精度受限的问题,本文提出一种基于哈里斯鹰优化算法(HHO)改进的RBF神经网络回归预测模型(HHO-RBF)。该模型通过模拟哈里斯鹰群体协同捕食的行为机制,对RBF神经网络的核心参数(中心向量、宽度参数及输出权值)进行全局寻优,有效平衡了算法的全局探索与局部开发能力。
2026-01-13 09:19:19
230
原创 【创新首发】【(改进SSA)ASFSSA-RBF时序预测】基于自适应螺旋飞行麻雀搜索算法的RBF神经网络时序预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在时序预测中存在参数优化困难、易陷入局部最优及泛化能力不足等问题,提出一种基于自适应螺旋飞行麻雀搜索算法(Adaptive Spiral Flying Sparrow Search Algorithm, ASFSSA)优化的RBF神经网络时序预测模型(ASFSSA-RBF)。
2026-01-13 09:18:19
349
原创 【创新首发】【(改进SSA)ASFSSA-RBF回归预测】基于自适应螺旋飞行麻雀搜索算法的RBF神经网络回归预测研究附Matlab代码
针对传统径向基函数(RBF)神经网络在回归预测任务中存在参数优化困难、易陷入局部最优、泛化能力不足等问题,本文提出一种基于自适应螺旋飞行麻雀搜索算法(Adaptive Spiral Flying Sparrow Search Algorithm, ASFSSA)优化的RBF神经网络回归预测模型(ASFSSA-RBF)。
2026-01-13 09:17:15
375
原创 【创新首发】【(改进SSA)ASFSSA-RBF分类预测】基于自适应螺旋飞行麻雀搜索算法的RBF神经网络分类预测研究附Matlab代码
针对传统麻雀搜索算法(SSA)在优化径向基函数(RBF)神经网络参数时易陷入局部最优、收敛精度不足的问题,提出一种基于自适应螺旋飞行麻雀搜索算法(ASFSSA)的RBF神经网络分类预测模型。该模型通过混沌映射初始化、自适应加权、莱维飞行更新及可变螺旋搜索四项核心改进策略,提升算法的全局搜索能力与收敛效率,并将其用于优化RBF神经网络的中心向量、宽度参数及输出层权重。
2026-01-13 09:16:24
222
原创 【传感器】【鲁棒目标定位】基于平方距离迭代重新加权最小二乘法的鲁棒目标定位附Matlab代码
在传感器网络定位、自动驾驶导航、室内机器人巡检等关键领域,目标定位的精度与稳定性直接决定系统运行可靠性。随着应用场景向复杂环境延伸(如城市峡谷、地下隧道、密集人群区域),传感器测量数据不可避免地受到噪声干扰、非视距遮挡、硬件故障等因素影响,产生大量异常值(离群点)。传统最小二乘法(LS)对异常值极度敏感,易导致定位结果严重偏离真实值,无法满足复杂场景下的鲁棒性需求。
2026-01-13 09:15:29
353
原创 【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性附Matlab代码
IMU(惯性测量单元)和GPS(全球定位系统)是现代导航系统中不可或缺的传感器,它们各自提供独特的定位和姿态信息。IMU通过测量角速度和加速度来推算物体的姿态和相对位移,而GPS则提供高精度的绝对位置信息。然而,单一传感器往往存在局限性,例如IMU会随着时间积累误差,而GPS在信号受阻时则无法工作。
2026-01-13 09:14:39
334
原创 【参数辨识】【非线性动力学方程】【非线性惯性力】【非线性阻尼力】【非线性刚度力】【六自由度系统动力学方程】附Python代码
在动力学系统分析与建模领域,【参数辨识】【非线性动力学方程】【非线性惯性力】【非线性阻尼力】【非线性刚度力】【六自由度系统动力学方程】是相互关联的核心概念。其中,六自由度系统动力学方程是复杂系统建模的典型载体,非线性惯性力、阻尼力、刚度力是构成非线性动力学方程的关键力学要素,而参数辨识则是确定这些方程中未知参数、实现模型验证与实用化的核心技术。以下将逐一解析各概念内涵及它们之间的内在联系。
2026-01-13 09:13:48
256
原创 【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)附Simulink仿真
全球能源转型进程加速推动光伏发电渗透率持续提升,光伏并网逆变器作为能源转换与电网接口的核心设备,其动态特性直接决定并网系统的稳定性与电能质量。在高渗透率并网场景下,逆变器与电网、逆变器集群间的交互作用易引发低频振荡、电压波动等稳定性问题,严重威胁电网安全运行。阻抗建模是量化分析并网稳定性的核心方法,通过建立逆变器输出阻抗与电网阻抗的数学关系,可基于奈奎斯特等阻抗比判据实现稳定性评估。扫频法则是验证阻抗模型准确性、获取实际系统动态特性的关键技术,为理论分析提供可靠数据支撑。
2026-01-13 09:12:58
311
原创 【并网光伏阵列】使用SimPowerSystems进行并网光伏阵列研究附Simulink仿真
在“双碳”目标推动下,光伏发电作为清洁可再生能源的核心利用形式,其并网运行的稳定性、效率与可靠性直接影响新能源电力系统的整体性能。并网光伏阵列的输出功率易受光照强度、环境温度等自然因素波动影响,且其直流转交流的电力变换过程涉及复杂的电力电子技术与控制策略,因此需通过精准的仿真建模与深入研究,优化系统设计、提升运行性能。
2026-01-13 09:11:40
365
2023Q1中国房地产金融分析:小阳春行情及其可持续性的探讨
2025-03-27
磨料射流破岩应力分析:磨料粒子和超临界CO2气体应力的力学计算
2025-03-18
【医美行业运营】医美机构社群裂变营销策略:构建高效用户增长与互动体系
2025-04-17
【医美整形行业】基于小红书数据的内容洞察与用户画像分析:搜索趋势及热门项目解析
2025-04-17
2022年中国房地产精装修市场热水器与净水器配套规模及品牌竞争格局分析
2025-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅