【电力系统】基于Agent的电力市场深度决策梯度深度强化学习算法建模研究Python复现

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 电力系统改革不断深化,电力市场竞争日益激烈。传统的电力市场决策方法难以应对复杂多变的市场环境和海量数据。本文针对电力市场参与者面临的复杂决策问题,提出了一种基于Agent的深度决策梯度(Deep Deterministic Policy Gradient, DDPG)算法建模方法。该方法利用深度强化学习技术,赋予Agent自主学习和适应市场环境的能力,从而实现深度决策,提升电力市场参与者的盈利能力和市场竞争力。本文详细阐述了该方法的模型构建、算法设计、仿真验证以及未来研究方向。

关键词: 电力市场; 深度强化学习; DDPG算法; Agent; 深度决策; 梯度算法

1. 引言

随着电力系统改革的不断推进,电力市场化程度不断提高,市场竞争日趋白热化。传统的电力市场决策方法,例如基于线性规划、博弈论等方法,在面对日益复杂的市场环境、海量实时数据以及参与者行为的非线性、不确定性时,其决策效率和准确性受到极大限制。 电力市场参与者,包括发电企业、配电企业和用户,需要在复杂的市场环境下进行发电计划、电力交易、负荷预测等一系列决策,以最大化自身的经济效益。因此,迫切需要开发一种能够应对复杂市场环境、具有自学习和适应能力的智能决策方法。

深度强化学习(Deep Reinforcement Learning, DRL)作为一种新兴的人工智能技术,在解决复杂决策问题方面展现出巨大的潜力。DRL能够通过与环境交互学习最优策略,无需预先设定复杂的规则,适应性强,并能处理高维状态空间和动作空间。本文采用一种基于Agent的深度决策梯度(DDPG)算法,构建电力市场参与者的决策模型,旨在提升其决策的智能化水平。

2. 基于Agent的电力市场建模

本研究将电力市场抽象为一个多Agent系统,每个Agent代表一个电力市场参与者(例如发电企业)。每个Agent都拥有自身的利益目标,例如利润最大化,并通过采取行动(例如报价、调度计划)来影响市场价格和自身的收益。

2.1 Agent 的设计:

每个Agent 包含以下核心组件:

  • 状态空间 (State Space): 包含影响Agent决策的关键信息,例如实时电价、负荷预测、自身发电成本、竞争对手的发电量、市场库存等。状态空间的设计需要充分考虑电力市场特点,并选择合适的特征提取方法,降低状态空间维度,提高算法效率。

  • 动作空间 (Action Space): 代表Agent可以采取的行动,例如报价策略、发电计划、参与市场交易的量等。动作空间的设计需要考虑市场的交易规则和Agent的能力限制。

  • 策略网络 (Policy Network): 一个深度神经网络,用于根据当前状态选择最佳行动。本文采用Actor网络表示策略,利用深度神经网络逼近最优策略。

  • 价值网络 (Critic Network): 另一个深度神经网络,用于评估策略网络选择的行动的价值。Critic网络评估Agent采取特定行动后所获得的累积奖励,指导Actor网络学习更优的策略。

2.2 DDPG算法的应用:

DDPG算法是一种基于Actor-Critic架构的离策略强化学习算法,能够处理连续动作空间,适合于电力市场中复杂的决策问题。其核心思想是利用Actor网络学习最优策略,Critic网络学习状态-动作价值函数,并通过梯度下降法更新网络参数,最终达到最优策略。

具体来说,本文采用DDPG算法的步骤如下:

  1. 初始化: 初始化Actor网络和Critic网络的参数,设置超参数,例如学习率、折扣因子等。

  2. 经验回放: 将Agent与环境交互产生的经验(状态、行动、奖励、下一状态)存储到经验回放池中。

  3. 采样和更新: 从经验回放池中随机采样样本,用于更新Actor网络和Critic网络的参数。

  4. 策略更新: 利用Critic网络计算的价值梯度更新Actor网络的参数,使其能够选择更有价值的行动。

  5. 价值函数更新: 利用TD误差更新Critic网络的参数,使其能够更准确地评估行动的价值。

  6. 迭代学习: 重复步骤2-5,直到满足终止条件,例如达到最大迭代次数或收敛标准。

3. 仿真验证

为了验证所提方法的有效性,本文构建了电力市场仿真平台,对不同场景下的电力市场进行模拟。仿真实验中,我们将提出的基于Agent的DDPG算法与传统的基于规则的决策方法进行比较,评估其在利润最大化、市场稳定性等方面的性能。 仿真结果表明,基于Agent的DDPG算法在应对复杂市场环境和竞争时,具有显著的优势,能够获得更高的利润,并更好地适应市场变化。 具体的实验设置、结果分析以及图表展示将在附录中详细给出。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值