✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
1.1 研究背景
随着无线通信和雷达技术的飞速发展,频谱资源日益紧张。双功能雷达和通信系统(Integrated Sensing and Communication, ISAC)作为一种能够有效提高频谱利用率的技术方案,受到了广泛关注。然而,传统的 ISAC 系统在面对复杂的传播环境时,信号传输性能往往会受到多径衰落、遮挡等因素的严重影响。智能超表面(Reconfigurable Intelligent Surface, RIS)作为一种新兴的技术,能够通过对无线传播环境的智能调控,为 ISAC 系统的性能提升带来新的机遇。
1.2 研究目的与意义
本研究旨在设计一种基于 RIS 辅助的双功能雷达和通信波束形成方案,充分利用 RIS 的可编程特性,优化雷达的探测性能和通信的传输质量,实现两者在同一频谱资源下的高效协同工作。通过该研究,有望为未来的智能交通、物联网等领域提供更可靠、高效的无线通信和感知解决方案,推动相关技术的发展与应用。
1.3 研究方法与创新点
研究采用理论分析、仿真建模和实验验证相结合的方法。在理论方面,深入研究 RIS 辅助下的雷达和通信信号传播模型,推导波束形成的优化算法;通过仿真建模,对设计方案进行性能评估和参数优化;最后,搭建实验平台进行实验验证。创新点在于将 RIS 引入双功能雷达和通信系统,提出一种联合考虑雷达探测和通信传输需求的波束形成设计方法,有效提升系统的整体性能。
二、相关理论基础
2.1 智能超表面(RIS)技术原理
2.1.1 RIS 的结构与工作机制
RIS 通常由大量的无源反射单元组成,这些单元可以通过外部控制信号独立地调整反射信号的幅度和相位。其工作机制基于电磁理论,通过对入射电磁波的散射特性进行调控,实现对无线传播环境的重塑。例如,通过改变反射单元的相位,可以使反射信号在特定方向上实现相长干涉,增强信号强度;反之,可实现相消干涉,抑制干扰信号。
2.1.2 RIS 在无线通信中的应用优势
在无线通信中,RIS 具有多种优势。首先,它能够显著提高信号的接收功率,通过优化反射相位,将信号能量聚焦到接收端,从而扩大通信覆盖范围,提升边缘用户的通信质量。其次,RIS 可以有效抑制多径干扰,通过合理设计反射系数,减少反射信号之间的相互干扰,提高信号传输的可靠性。此外,RIS 是无源设备,能耗极低,且部署灵活,可安装在建筑物表面、路灯杆等位置,无需复杂的布线和供电系统。
2.2 双功能雷达和通信系统基础
2.2.1 双功能系统的工作模式
双功能雷达和通信系统主要有两种工作模式:时分复用(Time Division Multiplexing, TDM)模式和频分复用(Frequency Division Multiplexing, FDM)模式。在 TDM 模式下,系统在不同的时间段分别进行雷达探测和通信传输,通过合理分配时间资源来平衡两者的性能。FDM 模式则是在不同的频段上同时进行雷达和通信操作,需要精确的频率规划和隔离技术,以避免相互干扰。
2.2.2 雷达和通信的信号特性与需求
雷达信号通常具有高功率、窄脉冲的特点,其主要需求是能够准确地探测目标的距离、速度和角度等信息,对信号的分辨率和信噪比要求较高。通信信号则更注重数据传输的速率和可靠性,需要在保证一定误码率的前提下,尽可能提高传输速率。在双功能系统中,需要综合考虑两者的信号特性和需求,设计合适的波形和波束形成策略。
三、RIS 辅助双功能雷达和通信波束形成设计
3.1 系统模型构建
3.1.1 考虑 RIS 的雷达和通信信号传播模型
建立一个包含发射端(雷达 / 通信基站)、RIS 和接收端(雷达目标 / 通信用户)的系统模型。假设发射端发送的信号经过直接路径和 RIS 反射路径到达接收端,根据电磁波传播理论,可得到接收信号的表达式。考虑到实际环境中的多径衰落、噪声等因素,对模型进行完善,使模型能够准确反映信号在复杂环境中的传播特性。
3.1.2 系统性能指标定义
为了评估设计方案的性能,定义了一系列性能指标。对于雷达部分,主要指标包括目标检测概率、距离分辨率、角度分辨率等;对于通信部分,指标包括数据传输速率、误码率、信道容量等。通过对这些指标的分析和优化,实现系统整体性能的提升。
3.2 联合波束形成算法设计
3.2.1 基于优化理论的波束形成算法推导
根据系统模型和性能指标,利用优化理论设计联合波束形成算法。以最大化系统的总性能为目标函数,同时考虑雷达和通信的约束条件,如功率限制、信号干扰等。通过拉格朗日乘子法、交替优化等方法,对目标函数进行求解,得到发射端和 RIS 的最优波束形成系数。
3.2.2 算法实现步骤与复杂度分析
详细阐述联合波束形成算法的实现步骤,包括初始化参数、迭代计算波束形成系数、判断收敛条件等。对算法的计算复杂度进行分析,评估其在实际应用中的可行性。通过优化算法结构和计算方法,降低算法的复杂度,提高算法的执行效率。
四、仿真与实验验证
4.1 仿真实验设置
4.1.1 仿真环境参数配置
在仿真实验中,设置了详细的环境参数。包括发射端和接收端的位置坐标、RIS 的位置和尺寸、信道衰落模型、噪声功率等。同时,根据实际应用场景,设置雷达目标的运动参数和通信用户的业务需求,使仿真环境尽可能接近真实情况。
4.1.2 对比方案选择
为了验证所提出的 RIS 辅助双功能雷达和通信波束形成设计方案的优越性,选择了几种对比方案。包括传统的无 RIS 辅助的双功能系统、仅考虑雷达或通信单一功能优化的波束形成方案等。通过与这些方案进行对比,突出本研究方案的性能优势。
4.2 仿真结果分析
4.2.1 雷达性能仿真结果
展示雷达在不同场景下的性能仿真结果,如目标检测概率随距离的变化曲线、角度分辨率的提升效果等。分析 RIS 辅助对雷达性能的影响,验证联合波束形成算法在提高雷达探测精度方面的有效性。
4.2.2 通信性能仿真结果
呈现通信部分的性能仿真结果,包括数据传输速率与信噪比的关系曲线、误码率的变化情况等。对比不同方案下的通信性能,说明 RIS 辅助和联合波束形成算法对提升通信质量和传输速率的作用。
4.3 实验验证
4.3.1 实验平台搭建
搭建了一个实际的实验平台,包括发射端设备(雷达信号发生器和通信基站设备)、RIS 硬件模块、接收端设备(雷达目标模拟器和通信用户终端)以及信号处理与控制单元。对实验平台的硬件设备进行详细介绍,说明其技术参数和功能特点。
4.3.2 实验结果与分析
通过实验平台进行实验测试,获取实际的实验数据。对实验结果进行分析,与仿真结果进行对比验证。讨论实验过程中遇到的问题和解决方案,进一步验证所提出的设计方案在实际应用中的可行性和有效性。
五、结论与展望
5.1 研究成果总结
本研究成功设计了一种 RIS 辅助双功能雷达和通信波束形成方案,通过理论分析、仿真建模和实验验证,证明了该方案能够有效提升双功能系统的性能。在雷达探测方面,提高了目标检测概率和分辨率;在通信传输方面,增加了数据传输速率和可靠性。同时,提出的联合波束形成算法具有较好的收敛性和计算效率。
5.2 研究的局限性与未来研究方向
研究也存在一些局限性,如在复杂环境中的模型准确性有待进一步提高,算法在大规模系统中的扩展性需要加强等。未来的研究方向可以包括深入研究更精确的信道模型,优化算法以适应大规模 RIS 和多用户场景,探索 RIS 与其他新兴技术(如人工智能、毫米波通信)的融合应用等,为双功能雷达和通信系统的发展提供更广阔的空间。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇