✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构的转型和对环境保护的日益重视,可再生能源,特别是风能和太阳能,在电力系统中占据的比例越来越高。高比例可再生能源的接入,虽然对降低碳排放、改善能源结构具有重要意义,但也给电力系统的稳定运行带来了新的挑战。其中,调峰问题尤为突出。风光等可再生能源出力具有间歇性、波动性和不可控性,为了维持电力供需平衡,需要调峰电源进行灵活的调节。然而,调峰运行通常会增加发电成本,这部分成本如何量化并合理分摊,成为构建公平、高效、可持续的高比例可再生能源电力系统亟需解决的关键问题。本文将深入探讨高比例可再生能源电力系统的调峰成本量化方法,并分析不同调峰成本分摊模型的优缺点,旨在为相关决策提供参考。
一、高比例可再生能源背景下调峰成本的来源与构成
在高比例可再生能源电力系统中,调峰成本的来源主要体现在以下几个方面:
- 调峰电源的额外运行成本:
传统的调峰电源,如燃煤、燃气电厂,在频繁启停、快速爬坡等调峰运行模式下,会增加燃料消耗、磨损率,并可能缩短设备寿命。此外,为了响应电力系统的快速需求,调峰电源可能需要在非最优效率点运行,进一步提高发电成本。
- 储能系统的投资和运行成本:
储能系统,包括抽水蓄能、电化学储能等,是应对可再生能源波动性的重要手段。然而,储能系统的建设投资巨大,且存在运行维护成本。这些成本需要在调峰成本中加以考虑。
- 需求侧响应的激励成本:
需求侧响应(Demand Response, DR)通过激励用户改变用电行为来缓解电力系统峰谷差。DR的实施需要支付相应的激励费用,例如降低电价、提供补贴等。
- 电网基础设施的升级改造成本:
为了适应高比例可再生能源的接入和频繁调峰的需求,电网需要进行升级改造,例如增加输电线路的容量、提高电网的智能化水平等。这些投资也会间接增加调峰成本。
- 弃风弃光造成的机会成本:
当调峰能力不足时,过剩的可再生能源电力可能会被弃用,这不仅浪费了清洁能源,也造成了经济损失,是一种隐性的调峰成本。
总而言之,在高比例可再生能源电力系统中,调峰成本不仅仅是发电成本的增加,还包括储能、需求侧响应、电网升级改造以及弃风弃光等多个方面的因素。
二、调峰成本量化模型
准确量化调峰成本是实现合理成本分摊的前提。目前,常用的调峰成本量化模型主要包括以下几种:
-
边际成本法: 边际成本法是基于电力系统运行的边际成本曲线来计算调峰成本。该方法认为,为了满足增加的电力需求,需要增加发电量,而增加发电量的成本就是边际成本。在高比例可再生能源电力系统中,调峰电源的边际成本可能显著高于基荷电源,因此边际成本法能够较好地反映调峰成本。然而,边际成本法难以准确反映设备启停、磨损等固定成本。
-
燃料成本差异法: 燃料成本差异法主要针对传统的燃煤、燃气电厂。该方法通过比较调峰运行和稳定运行状态下的燃料消耗量,计算燃料成本的差异,以此作为调峰成本。燃料成本差异法计算简便,但忽略了设备磨损、启停成本等因素。
-
机会成本法: 机会成本法主要用于量化弃风弃光造成的损失。该方法通过计算被弃用可再生能源电力的发电量,并乘以相应的电价,得到弃风弃光造成的经济损失。
-
全成本法: 全成本法是一种综合性的调峰成本量化方法。该方法不仅考虑了燃料成本、设备磨损成本、启停成本等直接成本,还包括储能系统的投资和运行成本、需求侧响应的激励成本、电网升级改造成本等间接成本。全成本法能够全面、准确地反映调峰成本,但计算过程较为复杂,需要大量的数据支持。
-
基于优化模型的成本分摊: 近年来,基于优化模型的成本分摊方法受到越来越多的关注。该方法通常构建一个电力系统运行的优化模型,考虑可再生能源的出力特性、调峰电源的运行特性、储能系统的运行特性等,通过优化求解,得到电力系统的最优运行方案,进而计算调峰成本。这种方法可以更加精细地反映电力系统的运行特性,提高成本量化的准确性。
三、调峰成本分摊模型
合理分摊调峰成本是构建公平、高效的高比例可再生能源电力系统的关键。目前,常用的调峰成本分摊模型主要包括以下几种:
-
按用电量分摊: 按用电量分摊是一种简单易行的成本分摊方法。该方法根据用户的用电量比例,将调峰成本分摊到各个用户。这种方法公平性较好,但无法反映用户的用电行为对电力系统的影响。例如,高峰期用电量大的用户,其用电行为加剧了电力系统的峰谷差,但按用电量分摊,其承担的调峰成本可能与其他用户相同,造成了不公平。
-
按峰值负荷贡献分摊: 按峰值负荷贡献分摊是一种更加精细的成本分摊方法。该方法根据用户在电力系统峰值时段的负荷贡献,将调峰成本分摊到各个用户。这种方法能够较好地反映用户的用电行为对电力系统的影响,鼓励用户改变用电习惯,削峰填谷。然而,峰值负荷贡献的计算方法可能存在争议,容易引发用户之间的纠纷。
-
按可再生能源消纳比例分摊: 按可再生能源消纳比例分摊是一种鼓励可再生能源发展的成本分摊方法。该方法将调峰成本分摊到使用了可再生能源电力的用户,或者分摊到接入可再生能源的发电企业。这种方法能够促进可再生能源的消纳,但可能增加部分用户的负担。
-
基于边际成本的分摊: 基于边际成本的分摊方法将调峰成本与电力系统的边际成本联系起来。例如,可以根据用户在不同时段用电的边际成本,将调峰成本分摊到各个用户。这种方法能够反映电力系统的实际运行成本,并引导用户合理用电。
-
Shapley值分摊: Shapley值是一种合作博弈理论中的概念,常用于解决成本分摊问题。该方法考虑了不同用户对电力系统峰值负荷的贡献程度,并根据贡献程度将调峰成本分摊到各个用户。Shapley值方法具有公平性、效率性等优点,近年来在电力系统成本分摊中得到广泛应用。
四、结论与展望
高比例可再生能源电力系统的调峰成本量化与分摊是一个复杂而重要的课题。准确量化调峰成本是实现合理成本分摊的前提,而合理分摊调峰成本是构建公平、高效、可持续的高比例可再生能源电力系统的关键。本文深入探讨了高比例可再生能源电力系统的调峰成本的来源与构成,分析了不同的调峰成本量化模型和分摊模型,并总结了它们的优缺点。
展望未来,以下几个方面值得进一步研究:
-
更加精细的调峰成本量化模型: 未来的调峰成本量化模型需要更加精细地考虑电力系统的运行特性,例如考虑不同类型可再生能源的出力特性、不同类型调峰电源的运行特性、储能系统的运行特性等,提高成本量化的准确性。
-
动态的调峰成本分摊机制: 未来的调峰成本分摊机制需要更加灵活,能够根据电力系统的运行情况、可再生能源的出力情况、用户的用电行为等因素,动态调整成本分摊比例,实现更加公平、高效的成本分摊。
-
基于区块链的成本分摊平台: 区块链技术具有去中心化、不可篡改等特点,可以用于构建一个透明、可信的调峰成本分摊平台,提高成本分摊的效率和公正性。
-
与其他电力市场机制的协同: 调峰成本分摊需要与其他电力市场机制(例如电力现货市场、容量市场)协同,才能实现更好的效果。例如,可以通过电力现货市场反映电力系统的实时供需情况,引导调峰电源参与市场竞争,降低调峰成本。
总而言之,在高比例可再生能源电力系统的发展过程中,调峰成本的量化与分摊将扮演越来越重要的角色。通过不断深入研究,完善相关模型和机制,可以为构建更加清洁、高效、可持续的未来能源体系做出贡献。
⛳️ 运行结果
🔗 参考文献
[1] 张远.风电与先进绝热压缩空气储能技术的系统集成与仿真研究[J].中国科学院研究生院(工程热物理研究所), 2014.
[2] 杨赛.基于VSG控制的主动配电网运行研究[D].北方工业大学,2024.
[3] 胡福年,徐伟成,陈军.计及电动汽车充电负荷的风电-光伏-光热联合系统协调调度[J].电力系统保护与控制, 2021, 49(13):11.DOI:10.19783/j.cnki.pspc.201075.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇