【阵列】存在激励误差时最佳微波功率传输的阵列合成研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

微波阵列天线在雷达、通信、导航等领域有着广泛的应用。阵列合成是阵列天线设计中的关键环节,旨在通过调整阵列单元的激励幅度和相位,来实现特定的辐射方向图和性能指标。理想情况下,阵列合成基于精确的激励值,然而在实际应用中,由于制造公差、元件老化、校准误差等因素,阵列单元的激励往往存在误差。这种激励误差会对阵列的性能产生显著影响,尤其是在远场功率传输方面。因此,研究存在激励误差时最佳微波功率传输的阵列合成,具有重要的理论意义和工程价值。

本文旨在探讨在存在激励误差的情况下,如何优化阵列合成,以实现最佳的微波功率传输。文章将首先回顾传统的阵列合成方法及其局限性,进而深入分析激励误差对阵列性能的影响。在此基础上,我们将重点讨论考虑激励误差的阵列合成方法,包括但不限于:基于统计模型的稳健优化方法、基于校准技术的误差补偿方法,以及基于自适应算法的在线调整方法。最后,我们将展望未来发展趋势,并总结本文的研究成果。

一、 传统阵列合成方法的局限性

传统的阵列合成方法,如切比雪夫阵列、泰勒阵列、以及基于傅里叶变换的合成方法,通常基于理想的激励条件。这些方法的核心思想是通过数学公式或者优化算法,确定阵列单元的激励幅度和相位,以满足特定的辐射方向图需求,例如主瓣增益、旁瓣电平、零点位置等。然而,这些方法忽略了实际阵列中存在的激励误差,导致其在实际应用中的性能与理论设计存在偏差。

以切比雪夫阵列为例,其旨在实现最小旁瓣电平,但在激励误差存在时,实际的旁瓣电平往往高于理论值,甚至可能出现旁瓣抬升,导致干扰增加,降低通信质量。类似地,基于傅里叶变换的合成方法对激励误差也十分敏感,误差会导致方向图畸变,影响波束指向的准确性。

因此,传统的阵列合成方法在面对实际的激励误差时显得力不从心,无法保证阵列的性能达到最佳状态,尤其是在远场功率传输方面。

二、 激励误差对阵列性能的影响分析

激励误差对阵列性能的影响是多方面的,主要体现在以下几个方面:

  • 方向图畸变:

     激励误差会破坏阵列单元之间的相位关系,导致合成的方向图偏离设计目标。主瓣可能出现偏移、展宽,旁瓣电平可能抬升,甚至出现新的副瓣,从而影响波束的指向精度和聚焦能力。

  • 增益下降:

     激励误差会降低阵列的有效孔径,导致阵列的增益下降。这意味着在相同输入功率下,阵列的辐射功率降低,远场接收到的信号强度减弱,影响通信距离和信号质量。

  • 功率效率降低:

     激励误差会导致部分能量无法有效辐射,而是以热损耗的形式散失,从而降低阵列的功率效率。尤其是在大功率应用中,激励误差带来的功率损耗不可忽视。

  • 辐射阻抗变化:

     激励误差会改变阵列单元之间的互耦关系,导致各单元的辐射阻抗发生变化。这会影响阵列的阻抗匹配,导致反射损耗增加,进一步降低功率传输效率。

总而言之,激励误差会对阵列的各项性能指标产生不利影响,降低阵列的整体性能,尤其是在远场功率传输方面,可能导致传输效率显著下降。

三、 考虑激励误差的阵列合成方法

为了克服激励误差带来的不利影响,研究人员提出了多种考虑激励误差的阵列合成方法,主要可以分为以下几类:

  1. 基于统计模型的稳健优化方法:

    这类方法将激励误差建模为随机变量,并假设其服从某种概率分布,例如高斯分布或均匀分布。然后,通过优化算法,在满足一定的概率约束条件下,寻找使阵列性能达到最佳的激励值。常见的稳健优化方法包括:

    基于统计模型的稳健优化方法能够有效地抑制激励误差带来的影响,提高阵列的鲁棒性,但需要准确地估计激励误差的统计特性,这在实际应用中可能比较困难。

    • 最坏情况优化 (Worst-Case Optimization):

       该方法旨在优化在最坏的激励误差情况下,阵列的性能仍然能够满足要求。虽然该方法具有较强的鲁棒性,但往往会导致过于保守的设计,牺牲了部分性能。

    • 随机规划 (Stochastic Programming):

       该方法将激励误差建模为随机变量,并通过优化算法,在一定概率水平下,使阵列的期望性能达到最佳。该方法能够更好地权衡性能和鲁棒性。

    • 机会约束规划 (Chance-Constrained Programming):

       该方法要求阵列的性能指标在一定的概率水平下满足约束条件。该方法能够有效地控制性能指标的波动范围。

  2. 基于校准技术的误差补偿方法:

    这类方法通过校准技术,测量阵列单元的实际激励值,然后根据测量结果对激励进行补偿,从而减小激励误差。常见的校准技术包括:

    基于校准技术的误差补偿方法能够有效地减小激励误差,提高阵列的性能,但需要复杂的测量设备和校准过程,成本较高,且难以实现实时校准。

    • 近场扫描法:

       通过近场扫描,测量阵列单元的实际辐射场,然后根据测量结果反演出阵列单元的激励值。

    • 探针校准法:

       在阵列单元附近放置探针,测量单元的输出信号,然后根据测量结果校准激励值。

    • 基于互耦的校准法:

       利用阵列单元之间的互耦关系,通过测量部分单元的激励值,推算出其他单元的激励值。

  3. 基于自适应算法的在线调整方法:

    这类方法利用自适应算法,根据阵列的实际辐射方向图,在线调整阵列单元的激励值,从而实时补偿激励误差。常见的自适应算法包括:

    基于自适应算法的在线调整方法能够实时补偿激励误差,具有较强的适应性和灵活性,但需要复杂的控制系统和较高的计算资源,且可能存在收敛速度慢和陷入局部最优解的问题。

    • 最小均方误差 (LMS) 算法:

       通过迭代调整激励值,使阵列的实际辐射方向图与期望方向图之间的均方误差最小。

    • 递归最小二乘 (RLS) 算法:

       通过递归计算,更新阵列单元的激励值,从而实现更快的收敛速度和更高的精度。

    • 遗传算法 (GA) 和粒子群优化 (PSO) 算法:

       将激励值的调整问题转化为优化问题,通过遗传算法或粒子群优化算法,搜索最佳的激励值组合。

四、 未来发展趋势

未来,随着微波技术和计算能力的不断发展,考虑激励误差的阵列合成研究将朝着以下几个方向发展:

  • 结合机器学习的智能阵列合成:

     利用机器学习算法,例如神经网络和深度学习,学习激励误差的分布规律,构建更加精确的误差模型,从而提高稳健优化的效果。同时,可以利用机器学习算法,实现更快的收敛速度和更高的校准精度。

  • 基于软件无线电的阵列合成:

     利用软件无线电技术,实现灵活可配置的阵列系统,能够根据实际应用环境,动态调整阵列的参数,从而更好地适应激励误差带来的影响。

  • 面向大规模阵列的快速优化算法:

     大规模阵列需要更高的计算效率和更低的复杂度,因此需要开发面向大规模阵列的快速优化算法,例如分布式优化算法和并行计算方法。

  • 硬件实现与性能评估:

     将理论研究成果转化为实际的硬件系统,并进行全面的性能评估,验证方法的有效性和实用性。

五、 结论

本文综述了存在激励误差时最佳微波功率传输的阵列合成研究。通过分析激励误差对阵列性能的影响,并总结了现有的考虑激励误差的阵列合成方法,包括基于统计模型的稳健优化方法、基于校准技术的误差补偿方法,以及基于自适应算法的在线调整方法。最后,展望了未来发展趋势,指出结合机器学习、软件无线电、面向大规模阵列的快速优化算法以及硬件实现与性能评估是未来研究的重要方向。

研究存在激励误差时最佳微波功率传输的阵列合成,对于提高微波阵列天线的性能,尤其是远场功率传输效率,具有重要的意义。未来的研究需要结合多学科的知识,例如电磁场理论、统计信号处理、优化算法和机器学习等,才能取得更加突破性的进展,推动微波阵列天线技术的发展。

总而言之,应对激励误差是阵列天线设计面临的一个重要挑战,持续的研究和创新将有助于提升阵列天线的性能和可靠性,使其在各种应用场景中发挥更大的作用。

⛳️ 运行结果

🔗 参考文献

[1] 杨熙.径向线阵列天线与小型化单元天线研究[D].西安电子科技大学,2011.DOI:10.7666/d.y1958710.

[2] 高亢.基于MATLAB平台的微波器件散射参量自动化测量设备的研究与实现[D].武汉理工大学,2009.DOI:CNKI:CDMD:2.2009.103181.

[3] 陈晖,何宗锐.基于MATLAB的微波传输线中信号传播教学软件[C]//2023年全国微波毫米波会议论文汇编(四).2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值