三模块七电平级联H桥整流器电压平衡控制策略附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代电力电子领域,多电平变换器因其输出电压质量高、谐波含量低、开关损耗小等优点,在电力系统、新能源接入、工业传动等诸多应用中展现出巨大的潜力。其中,级联H桥(Cascaded H-bridge, CHB)变换器以其模块化设计、易于扩展、故障容错性高等特点,成为应用最为广泛的多电平拓扑之一。本文所探讨的三模块七电平级联H桥整流器,即由三个串联的H桥模块构成,每相输出三个不同的电压电平,通过叠加形成七个输出电压电平。然而,在CHB整流器的运行过程中,直流侧电容电压的不平衡问题是制约其性能和可靠性的关键因素。由于每个H桥模块的直流侧电容独立供电,且受多种因素影响,如系统参数偏差、负荷瞬变、开关器件差异、控制死区效应以及电网电压扰动等,各模块的直流侧电容电压容易偏离设定值,导致输出电压畸变、谐波增加、甚至可能损坏器件。因此,研究和应用有效的直流侧电容电压平衡控制策略对于保证三模块七电平级联H桥整流器的稳定、高效运行至关重要。

本文将深入探讨三模块七电平级联H桥整流器电压平衡控制策略,首先分析导致电压不平衡的机理,接着详细阐述主流的电压平衡控制方法,并对不同方法的优缺点进行比较。最后,对未来的研究方向进行展望。

电压不平衡机理分析

理解电压不平衡的根源是设计有效控制策略的前提。三模块七电平级联H桥整流器电压不平衡主要源于以下几个方面:

  1. 直流侧电容参数差异:

    实际制造的电容器存在容值、等效串联电阻(ESR)等参数的偏差,这导致在相同的充放电电流下,各模块电容电压的变化率不同,从而产生电压不平衡。

  2. 开关器件差异:

    不同开关器件(如IGBT或MOSFET)的导通电阻、开关延时等特性存在差异,这会影响到每个模块的实际开关时间,进而影响到直流侧电容的充放电过程。

  3. 负载分配不均:

    在某些控制策略下,各H桥模块承担的瞬时功率或平均功率可能存在差异,导致其对应的直流侧电容充电或放电速率不同。

  4. 控制死区效应:

    为了避免桥臂上下管直通,控制信号中通常会加入死区时间。死区时间的长短和不对称性会影响开关器件的实际导通时间,对电容电压产生影响。

  5. PWM调制策略的影响:

    不同的PWM调制策略(如载波移相PWM、电平移相PWM等)在实现多电平输出的同时,其对各模块直流侧电容电流的影响也不同。某些调制策略本身就可能导致一定的电容电压波动或不平衡。

  6. 电网电压畸变或不平衡:

    输入电网电压的畸变或不平衡会影响整流器的输入电流和功率因数,进而间接影响到各模块的直流侧电容电压。

  7. 电流传感器或电压传感器误差:

    控制系统依赖于电流和电压传感器的反馈信号。传感器的测量误差会影响控制器的输出,导致电压控制不精确。

电压平衡控制策略

为了解决上述电压不平衡问题,研究人员提出了多种电压平衡控制策略。这些策略的核心思想是通过调整各H桥模块的开关信号或调制指数,来控制其直流侧电容的充放电过程,从而使各模块的电容电压趋于一致。以下是几种主要的电压平衡控制策略:

  1. 基于调制指数调整的电压平衡控制:
    这是最常用和直观的方法之一。其基本思想是:当某个模块的电容电压高于设定值时,适当减小该模块的调制指数;当电容电压低于设定值时,适当增加该模块的调制指数。通过这种方式,可以改变该模块的瞬时输出电压,进而影响其从交流侧吸收或释放的能量,从而调整其直流侧电容电压。

    • 实现方式:

      通常采用PI或PID控制器来调节每个模块的调制指数。每个模块都有一个独立的电压控制器,以该模块的电容电压与参考电压之间的误差为输入,输出该模块调制指数的补偿量。最终的调制指数由基本调制指数加上该补偿量得到。

    • 优点:

      实现简单,易于理解和调试。在稳态运行时,可以有效抑制电压不平衡。

    • 缺点:

      动态响应相对较慢,对于快速的负载变化或电网扰动,可能无法及时纠正电压不平衡。此外,调制指数的调整范围有限,过度的调整可能导致输出电压波形畸变。

  2. 基于环流注入的电压平衡控制:
    该方法通过在交流侧注入特定的环流来控制各模块之间的能量流动,从而达到电压平衡的目的。环流注入可以通过在dq坐标系下引入零序电压或负序电压来实现。

    • 实现方式:

      在整流器的控制系统中,通过附加一个环流控制器,根据各模块电容电压的偏差,计算出需要注入的环流分量,并将其加入到dq坐标系的参考电压指令中。

    • 优点:

      能够实现较好的动态响应,尤其对于电网电压不平衡或负载瞬变引起的电压波动有较好的抑制效果。

    • 缺点:

      需要对系统模型进行更深入的分析,控制器的设计相对复杂。环流的注入可能会增加系统的损耗和电流应力。

  3. 基于电容电压误差的功率补偿:
    该方法通过计算各模块电容电压与平均电容电压或参考电压之间的误差,并将该误差转化为一个附加的功率分量,然后通过控制每个模块的电流或电压来补偿该功率分量。

    • 实现方式:

      可以将电压误差通过一个PI控制器转化为一个电流补偿量,叠加到每个模块的参考电流指令中。或者,将电压误差直接转化为一个电压补偿量,叠加到每个模块的调制指令中。

    • 优点:

      概念清晰,易于理解。可以通过调节PI控制器的参数来优化控制性能。

    • 缺点:

      对电流或电压的控制精度要求较高。

  4. 基于预测控制的电压平衡策略:
    预测控制通过预测未来一段时间内系统的状态,并根据预定的优化目标选择最优的开关状态序列,从而实现对直流侧电容电压的平衡控制。

    • 实现方式:

      通常建立系统的离散时间模型,根据当前的系统状态和预测的输入信号,预测未来几个采样周期内的电容电压,并选择使电容电压方差最小或各模块电容电压最接近参考值的开关状态序列。

    • 优点:

      能够实现优良的动态性能和鲁棒性。能够同时考虑多个控制目标(如电流跟踪、电压平衡等)。

    • 缺点:

      计算量较大,对控制器的计算能力要求较高。对系统模型的精度敏感。

  5. 基于模糊逻辑或神经网络的智能控制策略:
    随着人工智能技术的发展,模糊逻辑和神经网络等智能控制方法也被应用于电压平衡控制。

    • 实现方式:

      通过构建模糊逻辑控制器或训练神经网络,根据各模块的电容电压误差和其变化率等信息,输出各模块的调制指数补偿量或开关信号。

    • 优点:

      适用于具有非线性、不确定性和时变特性的系统。无需建立精确的数学模型。

    • 缺点:

      模糊规则或神经网络的训练需要大量的先验知识或数据。控制器的解释性较差。

未来研究方向

尽管目前已经提出了多种电压平衡控制策略,但仍然存在一些挑战和未来的研究方向:

  1. 鲁棒性增强:

    进一步提高控制策略对参数变化、噪声和干扰的鲁棒性,确保在恶劣工况下也能保持良好的电压平衡效果。

  2. 多目标优化:

    除了电压平衡,CHB整流器还需要满足电流跟踪、功率因数控制、谐波抑制等其他控制目标。未来的研究可以将电压平衡控制与其他控制目标进行集成,实现多目标的协同优化。

  3. 故障容错下的电压平衡:

    级联H桥拓扑具有一定的故障容错能力,当某个模块发生故障时,如何调整控制策略以继续保持其余正常模块的电压平衡,是具有实际意义的研究方向。

  4. 基于数据驱动的控制:

    随着数据获取和处理能力的提升,可以探索基于机器学习、深度学习等技术,从运行数据中学习最优的控制策略,实现自适应和智能化的电压平衡控制。

  5. 新型调制策略与电压平衡的结合:

    研究新型的多电平调制策略,如何在实现更高输出电压质量的同时,更有利于直流侧电容电压的平衡。

  6. 低成本高性能的实现:

    探索利用低成本的控制器和传感器实现高性能的电压平衡控制策略。

结论

三模块七电平级联H桥整流器作为一种高性能的多电平变换器,其直流侧电容电压平衡问题是制约其广泛应用的关键挑战。本文深入分析了电压不平衡的机理,并详细阐述了几种主流的电压平衡控制策略,包括基于调制指数调整、环流注入、功率补偿、预测控制和智能控制等方法。每种方法都有其独特的优点和缺点,需要根据实际应用需求进行权衡选择。未来的研究应进一步关注提高控制策略的鲁棒性、实现多目标协同控制、故障容错下的电压平衡以及探索基于数据驱动和新型调制策略的电压平衡方法。通过持续的研究和创新,相信能够开发出更高效、更可靠的电压平衡控制策略,从而推动三模块七电平级联H桥整流器在更广泛领域的应用。

⛳️ 运行结果

🔗 参考文献

[1] 王志冰,于坤山,周孝信.H桥级联多电平变流器的直流母线电压平衡控制策略[J].中国电机工程学报, 2012, 32(6):8.DOI:CNKI:SUN:ZGDC.0.2012-06-008.

[2] 孙毅超,赵剑锋,季振东.并网型级联H桥变换器直流电压平衡和功率均衡控制策略[J].电力自动化设备, 2014, 34(001):55-60.DOI:10.3969/j.issn.1006-6047.2014.01.010.

[3] 盘宏斌,朱鸿章,肖志勇,等.级联H桥整流器的新型直流电压与无功平衡控制策略[J].中国电机工程学报, 2017, 37(12):9.DOI:10.13334/j.0258-8013.pcsee.161132.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值