✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
根区土壤水分分布是影响植物生长、作物产量和生态系统水循环的关键因素。准确预测其时空动态对于优化灌溉、评估干旱风险和管理水资源至关重要。传统的基于网格的方法,如有限差分法和有限元法,在处理复杂几何形状、非均匀土壤性质和动态边界条件时面临挑战,尤其是在需要高精度解析根系吸水引起的局部变化时。近年来,无网格方法因其灵活、无需预划分网格的优势,为解决这些难题提供了新的思路。本文旨在探讨一种基于局部径向基函数(LRBF)的无网格方法,用于预测根区土壤水分分布。我们将详细阐述LRBF方法的原理、在土壤水分传输方程中的应用,以及其在处理根系吸水项、非均匀土壤参数和复杂边界条件方面的优势。通过与传统方法的比较,我们将展示LRBF方法在提高计算效率和精度方面的潜力,为根区土壤水分预测提供一种有效的替代方案。
关键词: 土壤水分分布;根区;无网格方法;局部径向基函数;LRBF;水分传输方程;根系吸水
1. 引言
根区是土壤与植物相互作用最活跃的区域,其水分状况直接决定着植物的生理活动。准确预测根区土壤水分分布是深入理解植物水分吸收机制、优化灌溉策略、提高作物水分利用效率的基础。土壤水分在土壤介质中的传输是一个复杂的过程,受到土壤导水率、水分势、重力势等多种因素的影响。其动力学行为通常由Richards方程描述,该方程是一个高度非线性的偏微分方程。
传统的数值方法,如有限差分法(FDM)和有限元法(FEM),在解决Richards方程方面取得了显著进展。FDM通过将求解域离散为一系列节点,利用差分逼近偏导数;FEM则将求解域划分为有限个单元,利用分段插值函数进行逼近。然而,这些基于网格的方法在处理根区复杂的几何形状(如不规则边界、地下障碍物)、非均匀的土壤性质(如层状土壤、局部团聚体)以及植物根系的离散分布时,往往需要生成精细且复杂的网格。网格生成过程费时费力,且网格质量直接影响计算精度和稳定性。此外,当需要捕捉根系吸水引起的局部梯度时,网格局部加密虽然可以提高精度,但会显著增加计算量。
无网格方法作为一种新兴的数值技术,近年来在解决各类偏微分方程中展现出强大的潜力。与基于网格的方法不同,无网格方法直接利用一组离散的节点来离散求解域,无需预先生成连接节点的网格结构。这种特性使得无网格方法在处理复杂几何形状、移动边界和大规模变形等问题时具有天然的优势。在土壤水分传输模拟中,无网格方法可以更灵活地处理非均匀土壤参数和根系吸水项,避免了网格畸变带来的问题。
本文聚焦于局部径向基函数(LRBF)无网格方法在预测根区土壤水分分布中的应用。径向基函数(RBF)是一种常用的无网格插值和逼近工具,其函数值仅依赖于与中心点的径向距离。通过将RBF与局部支持域结合,LRBF方法不仅继承了RBF的高精度插值能力,还降低了计算成本和提高了处理大规模问题的能力。LRBF方法在求解偏微分方程中表现出色,其对节点分布的敏感性较低,且可以方便地处理高维问题。因此,LRBF方法有望成为一种有效的工具,用于预测根区复杂的土壤水分分布。
本文将首先回顾土壤水分传输的基本理论和Richards方程,并讨论根系吸水模型。接着,我们将详细介绍LRBF无网格方法的基本原理,包括节点分布、局部支持域的构建以及偏微分方程的离散化。然后,我们将阐述如何将LRBF方法应用于求解带有根系吸水项的Richards方程,重点讨论根系吸水项的处理方法。最后,我们将讨论LRBF方法在处理非均匀土壤参数和复杂边界条件方面的优势,并展望该方法未来的研究方向。
2. 土壤水分传输基本理论与Richards方程
土壤水分在土壤介质中的运动主要由压力梯度、重力梯度和渗透势梯度驱动。在大多数情况下,渗透势梯度对土壤水分运动的影响可以忽略不计。因此,土壤水分运动可以由达西定律的广义形式描述:
q=−K(θ)∇H
Richards方程是一个非线性的抛物型偏微分方程,其求解需要结合初始条件和边界条件。初始条件通常给定区域内的初始土壤水分分布或压力势分布。边界条件可以包括定势边界(Dirichlet边界)、定通量边界(Neumann边界)或混合边界(Robin边界)。在根区模拟中,地表边界通常考虑降雨、灌溉和蒸发,而底部边界则可能考虑自由排水或地下水位的影响。
3. LRBF无网格方法基本原理
局部径向基函数(LRBF)方法是基于径向基函数逼近的一种无网格方法。其核心思想是在求解域内选择一组离散的节点,并在每个节点周围定义一个局部支持域。在每个局部支持域内,利用该支持域内的节点和对应的函数值构建一个局部逼近函数。
3.1 节点分布与局部支持域
与基于网格的方法不同,LRBF方法不需要事先划分单元,而是直接在求解域内布置一系列离散节点。节点的分布可以是规则的,也可以是非规则的。节点分布的质量会影响计算精度,但LRBF方法对节点分布的敏感性相对较低。
3.2 基于LRBF的函数逼近
3.3 偏微分方程的离散化
这需要计算径向基函数及其多项式的导数。通过这种方式,可以将Richards方程在每个节点 ii 处的偏微分方程转化为一个关于该节点及其邻近节点上求解变量值的代数方程。将所有节点的代数方程组合起来,可以得到一个大型的稀疏线性或非线性方程组,用于求解所有节点上的土壤水分势(或含水量)。
对于Richards方程的非线性,通常采用迭代方法求解,如Newton-Raphson迭代或Picard迭代。时间离散化可以采用隐式或显式方法,考虑到Richards方程的抛物型性质,通常采用隐式方法以保证稳定性。
4. LRBF方法在Richards方程求解中的应用
将LRBF方法应用于求解根区土壤水分分布,需要将Richards方程中的各项进行离散化。主要挑战在于处理非线性项、根系吸水项和边界条件。
4.1 非线性项的处理
4.2 根系吸水项的处理
4.3 非均匀土壤参数的处理
4.4 复杂边界条件的处理
LRBF方法在处理复杂边界条件方面也具有优势。Dirichlet边界条件可以直接在边界节点上强制施加已知的压力势或含水量值。Neumann边界条件涉及通量,可以通过在边界节点上将Richards方程的通量项设置为已知值来实现。LRBF方法通过节点支持域和局部逼近函数,可以方便地计算边界节点的法向导数,从而施加Neumann边界条件。对于不规则边界,LRBF方法无需进行边界网格拟合,只需在边界上布置节点即可。
5. LRBF方法在根区土壤水分预测中的优势
与传统的基于网格方法相比,LRBF方法在预测根区土壤水分分布方面具有以下显著优势:
- 无需网格生成:
这是LRBF方法最突出的优势。避免了复杂且耗时的网格生成过程,尤其在处理复杂几何形状和非均匀土壤时,显著简化了前处理工作。
- 灵活处理非均匀性:
LRBF方法可以直接在每个节点上定义不同的土壤参数,无需复杂的网格划分来区分不同区域的土壤类型。这使得模拟具有高度空间变异性的根区土壤水分分布更加方便。
- 自然处理离散根系分布:
植物根系是离散分布的。LRBF方法可以直接在根系所在的节点上施加根系吸水项,而无需像网格方法那样将根系影响平均到单元上,从而更准确地模拟根系局部的吸水行为。
- 高精度逼近:
径向基函数具有高阶逼近能力,理论上可以达到任意阶的精度,对于捕捉根区复杂的局部梯度和变化具有优势。
- 对节点分布的敏感性较低:
LRBF方法对节点分布的规律性要求不高,可以使用非规则的节点分布,这在处理不规则区域时更为灵活。
- 易于处理高维问题:
径向基函数的定义在高维空间中是自然的,LRBF方法可以方便地推广到三维根区土壤水分模拟。
6. 挑战与未来展望
尽管LRBF方法在根区土壤水分预测中展现出巨大的潜力,但也面临一些挑战:
- 形状参数的选择:
径向基函数的形状参数对计算精度和稳定性有重要影响,如何选择合适的形状参数仍然是一个需要深入研究的问题。通常需要通过试算或优化方法确定。
- 局部支持域的选择:
支持域的大小和邻居节点的数量影响计算效率和精度。选择过小的支持域可能导致精度不足,选择过大的支持域则会增加计算成本。需要权衡效率和精度。
- 边界条件的精确施加:
尽管LRBF方法可以处理复杂边界,但精确施加Dirichlet和Neumann边界条件仍需仔细考虑,尤其是在边界附近的节点分布。
- 计算效率:
尽管LRBF是局部方法,但对于大规模问题,需要求解大型稀疏线性方程组,如何高效地求解这些方程组仍是研究重点。可以利用并行计算和预条件技术来提高计算效率。
- 与其他过程的耦合:
根区土壤水分分布与植物生长、养分传输、土壤微生物活动等过程密切相关。将LRBF方法与其他过程模型耦合,构建更全面的根系-土壤系统模型,是未来的重要研究方向。
未来,LRBF方法在根区土壤水分预测方面的研究可以聚焦于以下几个方面:
- 形状参数和支持域的自适应选择:
开发基于残差或其他指标的自适应算法,动态调整形状参数和支持域,以提高计算效率和精度。
- 与其他无网格方法的结合:
探索将LRBF方法与光滑粒子流体动力学(SPH)、移动最小二乘法(MLS)等其他无网格方法相结合,发挥各自优势,处理更复杂的问题。
- 考虑植物生理过程的详细模型:
将更精细的根系吸水模型和植物水分传输模型集成到LRBF框架中,更准确地模拟植物对土壤水分的响应。
- 三维模拟的应用与优化:
将LRBF方法应用于三维根区土壤水分模拟,并开发高效的三维计算算法。
- 不确定性量化:
考虑土壤参数、根系分布、边界条件等输入参数的不确定性,利用LRBF方法进行不确定性量化,评估预测结果的可靠性。
- 与遥感和地面监测数据的集成:
将LRBF模拟结果与遥感反演的土壤水分数据和地面传感器监测数据进行融合,提高预测精度和空间分辨率。
7. 结论
本文探讨了基于局部径向基函数(LRBF)的无网格方法用于预测根区土壤水分分布的可能性和优势。LRBF方法凭借其无需网格生成、灵活处理非均匀土壤参数和离散根系分布的特性,为Richards方程的求解提供了一种有效的替代方案。与传统基于网格的方法相比,LRBF方法在处理复杂根区环境方面展现出独特的优势,有望提高模拟精度和效率。尽管仍面临一些挑战,如形状参数的选择和计算效率的优化,但随着无网格方法的不断发展和计算能力的提升,LRBF方法在根区土壤水分预测领域具有广阔的应用前景。未来的研究应致力于解决当前挑战,进一步完善LRBF方法,并将其应用于更复杂的根系-土壤系统耦合模拟中,为优化水资源管理、提高作物水分利用效率和理解生态系统水循环提供科学支撑。
⛳️ 运行结果
🔗 参考文献
[1] 王海淇.大兴安岭北部实验林火影响下土壤碳、氮、水的时空变化[D].东北林业大学,2011.
[2] 沈智,王明强.基于无网格Galerkin法的连续体结构拓扑优化方法研究[J].机械, 2009, 36(1):5.DOI:10.3969/j.issn.1006-0316.2009.01.008.
[3] 程荣军.无网格方法的误差估计和收敛性研究[D].上海大学,2007.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇