2D物体识别方法——LINE-2D

LINE-2D是基于2D图像的模板匹配方法,通过二进制化梯度方向、扩散方向、计算梯度响应和线性存储匹配相似度来提高匹配速度和鲁棒性。尽管存在硬件兼容性、定位精度和环境噪声干扰的问题,但其在500W像素图像上的匹配速度可达0.3s,且与模板数量基本无关。改造line-mod代码可用于2D图像识别,但需要解决一些编译和改造难题。

line-2D是line-mod中的一个子模块,把line-mod的3D模态(modality)剔除,即只用2D图像制作模板,进行物体匹配就是line-2d,该方法的基本思想是根据图像的轮廓和梯度信息,通过经典的相似度计算公式(1)计算相似度进行的模板匹配,其巧妙之处在于:1)运用2进制位表示量化的梯度方向,并分别对搜索图像计算每个量化方向的响应图像,从而将公式(1)匹配相似度的计算过程,转化成查找表的过程,大大提高了计算相似度的效率;2)通过扩散方向(spread orientation)的方法,将邻域内的不同像素位置的梯度方向都统计到锚点像素中,从而提高了匹配过程对微小位置和旋转的鲁棒性;3)通过线性存储的数据组织方式,提高匹配过程的查找速度。
这里写图片描述(1)

主要思想说明

1. 二进制化梯度方向

图像原始的梯度方向可通过sobel算法计算得到,计算后的梯度方向是0~360°范围,该方法将梯度方向离散成8个方向,并用一个字节的数据表示八个梯度方向,如下图左1所示。只保留了方位信息去除了方向信息(主要区别这里的方位和方向,解释可能有点不到位原文中是用orientation和 direction,direction在这里特指方向的正方向),这种表示梯度方位的方法,简化了梯度的表示的信息量,为后面实现查找表的方向进行匹配做准备(因为只有8个方向,使得后面对搜索图像计算对各方向的梯度相应成为可能)。量化梯度信息,导致很多细节信息的丢失,必然导致很容易出现错误识别,为了弥补这一不足,作者对一定大小的领域内的所有位置处的量化后的梯度方向进行统计,同一方位超过一定数量的才作为备选特征点。

2. 扩散方向
### 使用2D相机测量两条线之间距离的方法 对于2D相机而言,其主要功能在于捕捉场景中的色彩信息并形成二维图像。然而,在特定条件下,也可以利用这些图像来估算几何特征间的相对位置关系。 #### 方法一:基于像素坐标系下的直接计算法 当目标线条位于同一平面上时,可以通过图像处理技术识别出这两条直线的位置,并转换成像素坐标形式表示出来。之后依据所获取的两个端点或多个样本点构建向量模型,进而求得两者间最短路径长度作为间距度量标准[^1]。 ```python import cv2 import numpy as np def calculate_distance_between_lines(image_path): img = cv2.imread(image_path) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray,50,150,apertureSize = 3) lines = cv2.HoughLinesP(edges,rho=1,theta=np.pi/180,threshold=100,minLineLength=100,maxLineGap=10)[0] line1_start_point,line1_end_point=(lines[0][0],lines[0][1]),(lines[0][2],lines[0][3]) line2_start_point,line2_end_point=(lines[1][0],lines[1][1]),(lines[1][2],lines[1][3]) distance=cv2.norm(np.array(line1_start_point)-np.array(line2_start_point)) return distance ``` 此段代码展示了如何读取一张含有待测线条的照片,经过边缘检测后提取出可能存在的直线条目,并最终选取前两条来进行简单欧式距离运算得出结果。 需要注意的是这种方法依赖于精确的目标定位以及假设条件——即两根线确实处于平行状态且共面;否则将会引入较大偏差甚至完全错误的结果解释。 #### 方法二:结合已知比例尺实现真实世界单位换算 如果环境中存在可参照的标准尺寸物体,则可以在拍摄过程中将其纳入视野范围内一同记录下来。随后借助计算机视觉算法找到该标记物对应的实际大小与图像内表现出来的宽度高度之间的映射关系,以此为基础推导其他未知要素的具体数值[^4]。 例如在一个工业应用场景里,操作员可能会放置一块具有固定边长的小方块靠近需监测的对象旁边拍照留证。后续分析阶段便能依靠这个额外的信息源完成从屏幕上的像素数到物理空间厘米级别的转变过程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值