佳佳是个贪玩的孩子。一天,他正在跟凡凡玩“数石子”的游戏。佳佳在地上摆了N堆石子,其中第I堆石子有Ai个石头。佳佳每次都会问凡凡:“凡凡,请问从第I堆到第J堆,总共有多少个石子?”聪明的凡凡每次都能快速而准确地回答对。凡凡老是被问问题,心里有些不服,就对佳佳说:“佳佳,你还记得你问了什么问题,我回答了什么答案吗?”佳佳说当然记得。于是凡凡说:“好,我把石子拿走,再问你一些相似的问题,你能答得出来吗?”佳佳张圆了嘴巴,望着凡凡,一脸疑问和惊讶的表情。你现在知道了游戏规则和过程,但没看见原来的石子。请你写一个程序来帮助佳佳。
数据范围
10%的数据满足1<=n<=10,0<=m,k<=10
30%的数据满足1<=n<=500,0<=m,k<=500
100%的数据满足1<=n<=5000,0<=m,k<=10000
输入文件的第一行有3个数N(1<=n<=5000),M,K(0<=m,k<=10000),表示N堆石子,佳佳问了M个问题,凡凡要问K个问题。接下来M行每行3个整数L,R(1<=l<=r<=n),X(-108<=X<=108),表示佳佳问从L堆到R堆的石子共有多少个,而凡凡回答X个。接下来K行每行2个整数A,B(1<=a<=b<=n),每行表示凡凡问从A到B这些堆里的石子有多少个。
输出文件需要对于凡凡提出每一个提问,你若可以回答,则输出答案,若无法回答,输出UNKNOWN。
Sample Input
10 5 5
1 5 4
2 5 4
3 6 5
1 9 9
6 6 2
1 9
2 6
1 2
3 5
1 7
Sample Output
9
6
1
3
UNKNOWN
————————————————————集训6.4的分割线————————————————————
思路:乍一看我没有什么思路。但是其实这就是一道并查集的简单应用。把每个区间有多少个石子转换成一条线段左右端点的距离是多少。这些端点在合并的过程中,因为端点间的关系会产生新的线段。而这些线段就是我可以查询的区间。
首先就是把石子堆转换成线段。例如6 6 2,(在6号堆到6号堆中有2个石子),转换成5-6之间的距离是2。
其次就是合并。如图:(黑色是原本存在的距离,蓝色是刚输入的d,红色是将要添加的线段)
fx
| \
| \
| \
x fy
| /
| /
| /
y
dis[fx, fy] == dis[x, y] + dis[x, fx] - dis[y, fy]。(fx作为fy的父亲)
至于这个公式成立的原因,我认为是:fy和x同属于fx的儿子。
如果x作为fy的父亲,成立的公式是:dis[x, fy] = dis[x, y] - dis[y, fy]。
剩下的就很简单了,路径压缩的时候,和爷爷之间的距离 = 和爸爸的距离 + 爸爸和爷爷的距离。
代码如下:
/*
ID: j.sure.1
PROG:
LANG: C++
*/
/****************************************/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <string>
#include <iostream>
using namespace std;
/****************************************/
const int N = 5005;
int n, m, k;
struct Tree
{
int fa, dis;
}tree[N];
int Find(int x)
{
int tmp;
if(x != tree[x].fa) {
tmp = tree[x].fa;
tree[x].fa = Find(tmp);
tree[x].dis = tree[x].dis + tree[tmp].dis;
}
return tree[x].fa;
}
void Union(int x, int y, int d)
{
int fx = Find(x), fy = Find(y);
if(fx != fy) {
tree[fy].fa = fx;
tree[fy].dis = d + tree[x].dis - tree[y].dis;
}
}
int main()
{
#ifdef J_Sure
// freopen("111.in", "r", stdin);
// freopen("111.out", "w", stdout);
#endif
scanf("%d%d%d", &n, &m, &k);
for(int i = 0; i <= n; i++) {
tree[i].fa = i;
tree[i].dis = 0;
}
while(m--) {
int a, b, d;
scanf("%d%d%d", &a, &b, &d);
a--;
Union(a, b, d);
}
while(k--) {
int a, b;
scanf("%d%d", &a, &b);
a--;
if(Find(a) == Find(b))
printf("%d\n", tree[b].dis - tree[a].dis);
else
puts("UNKNOWN");
}
return 0;
}