(一)题目描述
给定一个可包含重复数字的序列 nums
,按任意顺序 返回所有不重复的全排列。
(二)思路
利用回溯+递归
1)此类问题需画出递归搜索树,(该题的递归搜索树如下)然后脑子里有递归的执行流程。
2)该题与上一个全排列题的不同点是需要去重,想了一半天,不知道如何实现,后来看来解析才悟了。
//刚刚一直在想,如何才能在同一个depth下,不出现相同的元素,那么就要进行如下操作: //(1)首先得在nums元素列表出现重复时进行及时的跳过,那么判断条件是nums[i]==nums[i-1] //(2)其次就是当递归树的一列跳到另一列时,说明上次搜索的同一depth的元素刚刚被撤销,所以此时该数的used为flase;
(3)代码如下
class Solution16 {
List<List<Integer>>res;
public List<List<Integer>> permute(int[] nums) {
res=new ArrayList<>();
boolean[] used=new boolean[nums.length]; //记录哪些数已经被用过
dfs(nums,new ArrayList<>(),used,0);
return res;
}
private void dfs(int[] nums,List<Integer>path,boolean[] used,int depth){
if(depth== nums.length){
res.add(new ArrayList<>(path));
return;
}
//每进行一次函数调用,i都是从0开始循环,所以需要使用used数组记录该数是否被使用过
for (int i = 0; i <nums.length ; i++) {
if(used[i]==true){
continue;
}
//感觉我悟了!
//刚刚一直在想,如何才能在同一个depth下,不出现相同的元素,那么就要进行如下操作:
//(1)首先得在nums元素列表出现重复时进行及时的跳过,那么判断条件是nums[i]==nums[i-1]
//(2)其次就是当递归树的一列跳到另一列时,说明上次搜索的同一depth的元素刚刚被撤销,所以此时该数的used为flase;
if (i>0&&nums[i]==nums[i-1]&&!used[i-1]){
continue;
}
path.add(nums[i]);
used[i]=true;
dfs(nums,path,used,depth+1);
//执行到这一步时,表明上一步的递归已经进行了返回,所以需要进行状态重置;
//若不清楚递归调用流程,建议使用debug
//path.size()-1不影响i的变化,而且没调用一个递归函数就相当于开辟了一个新的函数空间,当该空间调用函数跳到下一空间去执行另一函数时,该空间的各种状态依然会保存,到结果返回时,该函数会从停止的地方继续执行
path.remove(path.size()-1);
used[i]=false;
}
}
}