环形链表2-LeetCode142

(一)题目描述

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。(不允许修改 链表。)

示例1:

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

(二)解题思路

(1)哈希表。当add()返回false时,返回该节点

(2)快慢指针法。

 

如上图:a为链表中环外部分的长度 ,b为slow与fast在入环后两者相遇时距离入环节点的长度,c为环内剩余长度。

在slow与fast相遇时,fast已经绕环走了n圈,所以fast走的所有路程为:

a+n(b+c)+b => a+(n+1)b+nc

而slow走的路程为:

a+b 

因为fast速度为slow的两倍,所以两者所走距离有如下关系

2(a+b)=   a+n(b+c)+b 变形有 a=c+(n−1)(b+c) 

 所以相当于是当slow与fast相遇后,再设置一下指针ptr,使其从head出发,slow也从相遇点出发,两者相遇的位置即是入口点(即n带入1时)

为何慢指针入环第一圈未走完及会遇上快指针?(字面解释)

可以想象,如果慢指针走完一圈都没遇上快指针,那么快指针走的这一圈去了哪里(想象绕操场走一圈,你跑了一圈都没遇到你同学是个什么概念,因为你同学也在这个操场上跑步,所以必定走的是一样的路,除非你同学跟在你身后,以和你一样的速度在跑步,才会遇不上)。

(三)代码实现

1)hashset:

public ListNode detectCycle(ListNode head) {
        //利用hashset
        HashSet<ListNode> nodeSet = new HashSet<>();
        ListNode tempNode = head;
        while (tempNode != null) {
            if (!nodeSet.add(tempNode)) {
                return tempNode;
            }
            tempNode = tempNode.next;
        }
        return null;
    }

2)快慢指针

public class Solution {
    public ListNode detectCycle(ListNode head) {
        if (head == null) {
            return null;
        }
        ListNode slow = head, fast = head;
        while (fast != null) {
            slow = slow.next;
            if (fast.next != null) {
                fast = fast.next.next;
            } else {
                return null;
            }
            if (fast == slow) {
                ListNode ptr = head;
                while (ptr != slow) {
                    ptr = ptr.next;
                    slow = slow.next;
                }
                return ptr;
            }
        }
        return null;
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值