(一)题目描述
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。(不允许修改 链表。)
示例1:
输入:head = [3,2,0,-4], pos = 1 输出:返回索引为 1 的链表节点 解释:链表中有一个环,其尾部连接到第二个节点。
(二)解题思路
(1)哈希表。当add()返回false时,返回该节点
(2)快慢指针法。
如上图:a为链表中环外部分的长度 ,b为slow与fast在入环后两者相遇时距离入环节点的长度,c为环内剩余长度。
在slow与fast相遇时,fast已经绕环走了n圈,所以fast走的所有路程为:
a+n(b+c)+b => a+(n+1)b+nc
而slow走的路程为:
a+b
因为fast速度为slow的两倍,所以两者所走距离有如下关系
2(a+b)= a+n(b+c)+b 变形有 a=c+(n−1)(b+c)
所以相当于是当slow与fast相遇后,再设置一下指针ptr,使其从head出发,slow也从相遇点出发,两者相遇的位置即是入口点(即n带入1时)
为何慢指针入环第一圈未走完及会遇上快指针?(字面解释)
可以想象,如果慢指针走完一圈都没遇上快指针,那么快指针走的这一圈去了哪里(想象绕操场走一圈,你跑了一圈都没遇到你同学是个什么概念,因为你同学也在这个操场上跑步,所以必定走的是一样的路,除非你同学跟在你身后,以和你一样的速度在跑步,才会遇不上)。
(三)代码实现
1)hashset:
public ListNode detectCycle(ListNode head) {
//利用hashset
HashSet<ListNode> nodeSet = new HashSet<>();
ListNode tempNode = head;
while (tempNode != null) {
if (!nodeSet.add(tempNode)) {
return tempNode;
}
tempNode = tempNode.next;
}
return null;
}
2)快慢指针
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null) {
return null;
}
ListNode slow = head, fast = head;
while (fast != null) {
slow = slow.next;
if (fast.next != null) {
fast = fast.next.next;
} else {
return null;
}
if (fast == slow) {
ListNode ptr = head;
while (ptr != slow) {
ptr = ptr.next;
slow = slow.next;
}
return ptr;
}
}
return null;
}
}