周志华《机器学习》(西瓜书)目录
https://editor.csdn.net/md?articleId=106864771
—————————————————————————————————
性能度量
对学习器的泛化性能进行评估,不仅需要有效可行的实验估计方法,还需 要有衡量模型泛化能力的评价标准,这就是性能度量(performance measure).
- 错误率与精度
- 查准率、查全率与F1
- ROC 与 AUC
- 代价敏感错误率与代价曲线
数据集:
学习器:f
回归任务最常用的性能度量是"均方误差" (mean squared error)。
对于一般的数据分布D以及概率密度函数p(.),均方误差为:
错误率与精度
错误率是分类错误的样本数占样本总数的比例。
精度则是分类正确的样本数占样本总数的比例。
对于一般的数据分布D以及概率密度函数p(.),其表示为:
查准率、查全率与F1
对于二分类问题,真实类别和机器预测类别的组合如下:
其查准率和查全率为:
以查准率为纵轴、查全率为横轴作图,就得到 了查准率-查全率曲线,简称 " P-R曲线"显示该曲线的图称为 “P-R图”。如下图所示:
平衡点:查准率=查全率
BEP 还是过于简化了些,更常用的是
F
1
F_1
F1 度量以及
F
β
F_\beta
Fβ:
其中
β
>
0
\beta>0
β>0度量了查全率对查准率的相对重要性。
β
=
1
\beta=1
β=1时退化为标准的 F1;
β
>
1
\beta>1
β>1时查全率有更大影响;
β
<
1
\beta<1
β<1时查准率有更大影响.
ROC 与 AUC
ROC 全称是"受试者工作特征" (Receiver Operating Characteristic) 曲
线,我们根据学习器的预 测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算 出两个重要量的值,分别以它们为横、纵坐标作图。ROC 曲线的纵轴是"真正 例率" (True Positive Rate,简称 TPR),横轴是"假正例率" (False Positive Rate,简称 FPR)。
AUC (Area Under ROC Curve)是ROC 曲线下的面积,AUC 可通过对 ROC 曲线下各部分的面积求和而得。离散情况下,AUC 可估算为:
排序"损失" (loss)为:
代价敏感错误率与代价曲线
“代价敏感” (cost-sensitive)错误率是指在非均等代价情况下,我们所希望的不再是简单地最小化错误次 数,而是希望最小化"总体代价" (total cost)。
在非均等代价下,ROC 曲线不能直接反映出学习器的期望总体代价,而"代价曲线" (cost curve) 则可达到该目的。
其中横轴是取值为 [0 ,1] 的正例概率代价,纵轴是取值为 [0 ,1] 的归一化代价,p 是样例为正例的概率。
参考文献
[1] 周志华. 机器学习 : = Machine learning[M]. 清华大学出版社, 2016.