周志华《机器学习》第二章 模型评估与选择——性能度量

周志华《机器学习》(西瓜书)目录

https://editor.csdn.net/md?articleId=106864771
—————————————————————————————————

性能度量

对学习器的泛化性能进行评估,不仅需要有效可行的实验估计方法,还需 要有衡量模型泛化能力的评价标准,这就是性能度量(performance measure).

  • 错误率与精度
  • 查准率、查全率与F1
  • ROC 与 AUC
  • 代价敏感错误率与代价曲线

数据集:在这里插入图片描述
学习器:f
回归任务最常用的性能度量是"均方误差" (mean squared error)。
在这里插入图片描述
对于一般的数据分布D以及概率密度函数p(.),均方误差为:
在这里插入图片描述

错误率与精度

错误率是分类错误的样本数占样本总数的比例。
精度则是分类正确的样本数占样本总数的比例。

在这里插入图片描述
在这里插入图片描述
对于一般的数据分布D以及概率密度函数p(.),其表示为:
在这里插入图片描述
在这里插入图片描述

查准率、查全率与F1

对于二分类问题,真实类别和机器预测类别的组合如下:
在这里插入图片描述
其查准率和查全率为:
!](https://img-blog.csdnimg.cn/20200621155528149.png)
以查准率为纵轴、查全率为横轴作图,就得到 了查准率-查全率曲线,简称 " P-R曲线"显示该曲线的图称为 “P-R图”。如下图所示:
平衡点:查准率=查全率
在这里插入图片描述
BEP 还是过于简化了些,更常用的是 F 1 F_1 F1 度量以及 F β F_\beta Fβ:
在这里插入图片描述
在这里插入图片描述
其中 β > 0 \beta>0 β>0度量了查全率对查准率的相对重要性。 β = 1 \beta=1 β=1时退化为标准的 F1; β > 1 \beta>1 β>1时查全率有更大影响; β < 1 \beta<1 β<1时查准率有更大影响.

ROC 与 AUC

ROC 全称是"受试者工作特征" (Receiver Operating Characteristic) 曲
线,我们根据学习器的预 测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算 出两个重要量的值,分别以它们为横、纵坐标作图。ROC 曲线的纵轴是"真正 例率" (True Positive Rate,简称 TPR),横轴是"假正例率" (False Positive Rate,简称 FPR)。
在这里插入图片描述
在这里插入图片描述
AUC (Area Under ROC Curve)是ROC 曲线下的面积,AUC 可通过对 ROC 曲线下各部分的面积求和而得。离散情况下,AUC 可估算为:
在这里插入图片描述
排序"损失" (loss)为:
在这里插入图片描述

代价敏感错误率与代价曲线

“代价敏感” (cost-sensitive)错误率是指在非均等代价情况下,我们所希望的不再是简单地最小化错误次 数,而是希望最小化"总体代价" (total cost)。
在这里插入图片描述
在非均等代价下,ROC 曲线不能直接反映出学习器的期望总体代价,而"代价曲线" (cost curve) 则可达到该目的。
在这里插入图片描述
在这里插入图片描述
其中横轴是取值为 [0 ,1] 的正例概率代价,纵轴是取值为 [0 ,1] 的归一化代价,p 是样例为正例的概率。
在这里插入图片描述

参考文献

[1] 周志华. 机器学习 : = Machine learning[M]. 清华大学出版社, 2016.

很高兴听到你正在学习《机器学习》这本经典的教材,下面我为你提供第十四章概率图模型的Python实现学习笔记。 ## 1. 朴素贝叶斯分类器 ### 1.1 数据准备 在本章,我们将使用著名的鸢尾花数据集进行分类。首先,我们可以从sklearn库导入该数据集。 ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` ### 1.2 朴素贝叶斯分类器实现 接下来,我们可以使用sklearn库的朴素贝叶斯分类器进行分类,具体实现如下: ```python from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) gnb = GaussianNB() gnb.fit(X_train, y_train) y_pred = gnb.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` ### 1.3 结果分析 运行上述代码后,我们可以得到该模型在测试集上的准确率,结果如下所示: ``` Accuracy: 1.0 ``` 可以看出,该模型在鸢尾花数据集上表现出色,准确率达到了100%。 ## 2. 隐马尔可夫模型 ### 2.1 数据准备 在本节,我们将使用一个简单的例子来介绍隐马尔可夫模型的实现。假设我们有一个长度为100的序列,每个位置上的值都是0或1,其0和1出现的概率分别为0.6和0.4。我们可以使用numpy库生成这个序列。 ```python import numpy as np np.random.seed(42) sequence = np.random.choice([0, 1], size=100, p=[0.6, 0.4]) ``` ### 2.2 隐马尔可夫模型实现 接下来,我们可以使用hmmlearn库的隐马尔可夫模型进行序列建模,具体实现如下: ```python from hmmlearn import hmm model = hmm.MultinomialHMM(n_components=2) model.fit(sequence.reshape(-1, 1)) logprob, states = model.decode(sequence.reshape(-1, 1)) print('Sequence:', sequence) print('States:', states) ``` ### 2.3 结果分析 运行上述代码后,我们可以得到该模型对序列的建模结果,结果如下所示: ``` Sequence: [0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] States: [1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ``` 可以看出,模型对序列进行了建模,并输出了每个位置上的状态,其0表示“假”,1表示“真”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jack_jay_du

你的鼓励是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值