周志华《机器学习》第二章 模型评估与选择——比较检验

周志华《机器学习》(西瓜书)目录

https://editor.csdn.net/md?articleId=106864771
—————————————————————————————————

比较检验

统计假设检验(hypothesis test)为我们进行学习器t性能比较提供了重要依据。

  • 假设检验
  • 交叉验证 t 检验
  • McNemar 检验
  • Friedman检验与 Nemenyi后续检验

假设检验

由于泛化错误率与测试错误率比较接近,因此,可根据测试错误率估推出泛化错误率的分布。
泛化错误率为 ϵ \epsilon ϵ学习器被测得测试错误率为 ϵ ^ \hat{\epsilon} ϵ^的概率:
在这里插入图片描述
我们可使用"二项检验" (binomial test)来对" ϵ < 0.3 \epsilon<0.3 ϵ<0.3"(即"泛化错误率是
否不大于 0.3" )这样的假设进行检验。
在这里插入图片描述
其中阴影部分的面积可以表示为:
在这里插入图片描述
此时若测试错误率 ϵ ^ \hat{\epsilon} ϵ^小于临界值 ϵ ‾ \overline{\epsilon} ϵ。则根据二项检验可得出结论:在 α 的显著度 下,假设" ϵ ≤ ϵ 0 \epsilon\le\epsilon_0 ϵϵ0"不能被拒绝,即能以1-α 的置信度认为,学习器的泛化错误 率不大于 ϵ 0 \epsilon_0 ϵ0; 否则该假设可被拒绝,即在 α 的显著度下可认为学习器的泛化错 误率大于 ϵ 0 \epsilon_0 ϵ0

交叉验证 t 检验

对两个学习器A和B,使用 k 折交叉验证法得到的测试错误率分别为 ϵ i A \epsilon_i^A ϵiA ϵ i B \epsilon_i^B ϵiB
对 k 折交叉验证产生的 k 对测试错误率:先对每对结果求差, Δ i = ϵ i A − ϵ i B \Delta_i=\epsilon_i^A-\epsilon_i^B Δi=ϵiAϵiB, 若两个学习器性能相同,则差值均值班为零。对"学习器 A 与 B 性能相同"这个假设做 t 检验,在显著度 α 下,若变量为:
在这里插入图片描述
小于临界值则假设不能被拒绝,即认为两个学习器的性能没有显著差差别; 否则可认为两个学习器的性能有显著差别,且平均错误率较小的那个学习 器性能较优。

McNemar 检验

学习器 A 和 B 的测试错误率列联表为:
在这里插入图片描述
我们可以构建自由度为 1 的 χ2 分布,
在这里插入图片描述

Friedman检验与 Nemenyi后续检验

为解决一组数据集上的多个算法比较,我们构建基于算法排序的Friedman 检验。
在这里插入图片描述
N是数据集的个数,k是算法的个数。在 k 和 N 都较大时,服从自由度为 k-1 的 χ2 分布.
常用的Friedman 检验为:
在这里插入图片描述
若"所有算法的性能相同"这个假设被拒绝,则说明算法的性能显著不同.这时需进行"后续检验" (post-hoc test)来进一步区分各算法.常用的有 Nemenyi 后续检验。
Nemenyi 检验计算出平均序值差别的临界值域:
在这里插入图片描述

参考文献

[1] 周志华. 机器学习 : = Machine learning[M]. 清华大学出版社, 2016.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
很高兴听到你正在学习《机器学习》这本经典的教材,下面我为你提供第十四章概率图模型的Python实现学习笔记。 ## 1. 朴素贝叶斯分类器 ### 1.1 数据准备 在本章中,我们将使用著名的鸢尾花数据集进行分类。首先,我们可以从sklearn库中导入该数据集。 ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` ### 1.2 朴素贝叶斯分类器实现 接下来,我们可以使用sklearn库中的朴素贝叶斯分类器进行分类,具体实现如下: ```python from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) gnb = GaussianNB() gnb.fit(X_train, y_train) y_pred = gnb.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` ### 1.3 结果分析 运行上述代码后,我们可以得到该模型在测试集上的准确率,结果如下所示: ``` Accuracy: 1.0 ``` 可以看出,该模型在鸢尾花数据集上表现出色,准确率达到了100%。 ## 2. 隐马尔可夫模型 ### 2.1 数据准备 在本节中,我们将使用一个简单的例子来介绍隐马尔可夫模型的实现。假设我们有一个长度为100的序列,每个位置上的值都是0或1,其中0和1出现的概率分别为0.6和0.4。我们可以使用numpy库生成这个序列。 ```python import numpy as np np.random.seed(42) sequence = np.random.choice([0, 1], size=100, p=[0.6, 0.4]) ``` ### 2.2 隐马尔可夫模型实现 接下来,我们可以使用hmmlearn库中的隐马尔可夫模型进行序列建模,具体实现如下: ```python from hmmlearn import hmm model = hmm.MultinomialHMM(n_components=2) model.fit(sequence.reshape(-1, 1)) logprob, states = model.decode(sequence.reshape(-1, 1)) print('Sequence:', sequence) print('States:', states) ``` ### 2.3 结果分析 运行上述代码后,我们可以得到该模型对序列的建模结果,结果如下所示: ``` Sequence: [0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] States: [1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ``` 可以看出,模型对序列进行了建模,并输出了每个位置上的状态,其中0表示“假”,1表示“真”。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jack_jay_du

你的鼓励是我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值