传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1025
题意:可以转化成为求最长上升子序列(Longest Increasing Subsequence)。
思路:O(N²)的DP没什么好考虑的,说不定还会超时。状态转移方程为f[i]=max(f[i],f[j]+1),f[j]满足a[j]不小于a[i]且j<i。
所以我们考虑用二分查找。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>
#include<stack>
#define ll long long
using namespace std;
int a[500001];
int t[500001];
int bin_find(int l,int r,int x)
{
while(l<=r)
{
int m=(l+r)>>1;
if(t[m]==x) return m;
if(t[m]<x) l=m+1;
else r=m-1;
}
return l;
}
int main()
{
int n,x,y,cnt=0;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)
{
scanf("%d%d",&x,&y);
a[x]=y;
}
t[0]=a[1];
int ans=1;
for(int i=2;i<=n;i++)
{
if(t[ans-1]<=a[i]) t[ans++]=a[i];
else t[bin_find(0,ans,a[i])]=a[i];
}
cout<<"Case "<<++cnt<<":"<<endl;
if(ans==1)
cout<<"My king, at most 1 road can be built."<<endl<<endl;
else
cout<<"My king, at most "<<ans<<" roads"<<" can be built."<<endl<<endl;
}
return 0;
}
上述代码中的t数组存储的是已知的最大长度的上升数列 ,如果可以延长则延长,否则尽力把原位置上的数用后来的数缩小(比如原【1,4,7】,后来一个3,则变为【1,3,7】),这步的作用是可以让后面形成的上升序列更长。
针对此种操作,我们可以用下面的set来处理:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>
#include<stack>
#define ll long long
using namespace std;
int a[500001];
set<int> s;
typedef set<int>::iterator IT;
int main()
{
int n,x,y,cnt=0;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)
{
scanf("%d%d",&x,&y);
a[x]=y;
}
s.clear();
s.insert(0);s.insert(500005);
int ans=0;
for(int i=n;i>=1;i--)
{
s.insert(a[i]);
IT it=s.find(a[i]);
it--;
if(it==s.begin())
ans++;
else s.erase(it);
}
cout<<"Case "<<++cnt<<":"<<endl;
if(ans==1)
cout<<"My king, at most 1 road can be built."<<endl<<endl;
else
cout<<"My king, at most "<<ans<<" roads"<<" can be built."<<endl<<endl;
}
return 0;
}